Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Article Number 5
Number of page(s) 14
DOI https://doi.org/10.1051/kmae/2018044
Published online 14 February 2019
  • Abonyi A, Leitão M, Stanković I, Borics G, Várbíró G, Padisák J. 2014. A large river (River Loire, France) survey to compare phytoplankton functional approaches: do they display river zones in similar ways? Ecol Indic 46: 11–22. [Google Scholar]
  • Allende L, Tell G, Zagarese HE, Torremorell A, Pérez G, Bustingorry J, Escaray R, Izaguirre I. 2009. Phytoplankton and primary production in clear-vegetated, inorganic-turbid and algal-turbid shallow lakes from Pampa Plain (Argentina). Hydrobiologia 624: 45–60. [Google Scholar]
  • APHA (American Public Health Association). 2005. Standard Methods for the Examination of Water and Wastewaters. Washington: APHA. [Google Scholar]
  • Araújo F, Becker V, Attayde AL. 2016. Shallow lake restoration and water quality management by the combined effects of polyaluminium chloride addition and benthivorous fish removal: a field mesocosm experiment. Hydrobiologia 778: 243–252. [Google Scholar]
  • Avigliano L, Vinocur A, Chaparro G, Tell G, Allende L. 2014. Influence of re-flooding on phytoplankton assemblages in a temperate wetland following prolonged drought. J Limnol 73: 247–262. [Google Scholar]
  • Becklioglu M, Meerhoff M, Søndergaard M, Jeppesen E. 2011. Eutrophication and restoration of shallow lakes from a cold temperate to a warm Mediterranean and a (sub)tropical climate. In: Ansari AA, Lanza GR, Gill SS, Rast W, eds. Eutrophication: Causes, Consequences and Control. The Netherlands: Springer, pp. 91–108. [Google Scholar]
  • Benincá E, Huisman J, Heerkloss R, Jöhknl KD, Branco P, Van Nes EH, Scheffer M, Ellner SP. 2008. Chaos in a long-term experiment with a plankton community. Nature 451: 822–825. [CrossRef] [PubMed] [Google Scholar]
  • Blaum N, Mosner E, Schwager M, Jeltsch F. 2011. How functional is functional? Ecological groupings in terrestrial animal ecology: towards an animal functional type approach. Biodivers Conserv 20: 2333–2345. [Google Scholar]
  • Bonilla S, Aubriot L, Soares MCS, González-Piana M, Fabre A, Huszar VLM, Lürling M, Antoniades D, Padisák J, Kruk C. 2012. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiol Ecol 79: 594–607. [CrossRef] [PubMed] [Google Scholar]
  • Bortolini JC, Rodrigues LC, Jatyi S, Train S. 2014. Phytoplankton functional and morphological groups as indicators of environmental variability in a lateral channel of the Upper Paraná River floodplain. Acta Limnol Bras 26: 98–108. [CrossRef] [Google Scholar]
  • Carpenter SR, Stanly EH, Van der Zanden MJ. 2011. State of the world's freshwater ecosystems: physical, chemical, and biological changes. Annu Rev Environ Resour 36: 75–99. [Google Scholar]
  • Chen K-N, Bao C-H, Zhou W-P. 2009. Ecological restoration in eutrophic Lake Wuli: a large enclosure experiment. Ecol Eng 35: 1646–1655. [Google Scholar]
  • Crossetti LO, Bicudo DC, Bicudo CEM, Bini LM. 2008. Phytoplankton biodiversity changes in a shallow tropical reservoir during the hypertrophication process. Braz J Biol 68: 1061–1067. [Google Scholar]
  • Cuenca del Plata. 1987. Evaluación de la calidad de las aguas y control de la contaminación. Segunda Reunión de Contrapartes Técnicas de los países de la Cuenca del Plata. Documento de Trabajo 021. [Google Scholar]
  • DGEC (Dirección Nacional de Estadísticas y Censo). 2016. Gobierno de la Ciudad de Buenos Aires. Departamento de Cartografía. https://www.estadisticaciudad.gob.ar/eyc/wp-content/uploads/2016/08/DP051603.pdf [Google Scholar]
  • Fabre A, Carballo C, Hernández E, Piriz P, Bergamino L, Mello L, González S, Pérez G, León JG, Aubriot L, Bonilla S, Kruk C. 2010. El nitrógeno y la relación zona eufótica/zona de mezcla explican la presencia de cianobacterias en pequeños lagos subtropicales, artificiales de Uruguay. Panam J Aquat Sci 5: 112–125. [Google Scholar]
  • Fazio A, O'farrell I. 2005. Phytoplankton and water quality in a shallow lake: a response to secondary salinization (Argentina). Wetlands 25: 531–541. [CrossRef] [Google Scholar]
  • Francis RA, Chadwick MA. 2012. What makes a species synurbic? Appl Geogr 32: 514–521. [Google Scholar]
  • Gledhill DG, James P, Davies DH. 2008. Pond density as a determinant of aquatic species richness in an urban landscape. Landsc Ecol 23: 1219–1230. [Google Scholar]
  • Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4: 9. [Google Scholar]
  • Happey-Wood C. 1988. Ecology of freshwater planktonic green algae. In: Sandgren CD, ed. Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge: Cambridge University Press, pp. 175–226. [Google Scholar]
  • Henny C, Meutia AA. 2014. Urban lakes in Megacity Jakarta: risk and management plan for future sustainability. Procedia Environ Sci 20: 737–746. [Google Scholar]
  • Hirose M, Nishibe Y, Ueki M, Nakano S-H. 2003. Seasonal changes in the abundance of autotrophic picoplankton and some environmental factors in hypereutrophic Furuike Pond. Aquat Ecol 37: 37–43. [Google Scholar]
  • Hulot FD, Carmignac D, Legendre S, Yéprémian C, Bernards C. 2012. Effects of microcystin-producing and microcystin-free strains of Planktothrix agardhii on long-term population dynamics of Daphnia magna . Ann Limnol − Int J Lim 48: 337–347. [CrossRef] [Google Scholar]
  • Izaguirre I, Allende L, Escaray R, Bustingorry J, Pérez G, Tell G. 2012. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia 698: 203–216. [Google Scholar]
  • Jovanovic J, Trbojevic I, Subakov Simic G, Popovic S, Predojevic D, Blagojevic A, Karadžic V. 2017. The effect of meteorological and chemical parameters on summer phytoplankton assemblages in an urban recreational lake. Knowl Manag Aquat Ecosyst 418: 48. [CrossRef] [Google Scholar]
  • Kamenir Y, Dubinsky Z, Zohary T. 2004. Phytoplankton size structure stability in a meso-eutrophic subtropical lake. Hydrobiologia 520: 89–104. [Google Scholar]
  • Kamenir Y, Dubinsky Z, Zohary T. 2006. The long-term patterns of phytoplankton taxonomic size-structure and their sensitivity to perturbation: a Lake Kinneret case study. Aquat Sci 68: 490–501. [Google Scholar]
  • Kruk C, Segura AM. 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia 698: 191–202. [Google Scholar]
  • Kruk C, Huszar VLM, Peeters ETHM, Bonilla S, Costa L, Lürling M, Reynolds CS, Scheffer M. 2010. A morphological classification capturing functional variation in phytoplankton. Freshw Biol 55: 614–627. [Google Scholar]
  • Kruk C, Peeters ETHM, Van Nes EH, Huszar VLM, Costa LS, Scheffer M. 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limnol Oceanogr 56: 110–118. [Google Scholar]
  • Lepistö L, Holopainen A-L, Vuoristo H. 2004. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes. Limnologica 34: 236–248. [Google Scholar]
  • Litchman E, De Tezanos Pinto P, Klausmeier CA, Thomas MK, Yohiyama K. 2010. Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653: 15–28. [Google Scholar]
  • Lv J, Wu H, Chen M. 2011. Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnoligica 41: 48–56. [CrossRef] [Google Scholar]
  • Lyche-Solheim A, Feld CK, Birk S, Phillips G, Carvalho L, Morabito G, Mischke U, Willby N, Søndergaard M, Hellsten S, Lolada A, Mjelde M, Böhmer J, Miler O, Pusch MT, Argillier C, Jeppesen E, Lauridsen TL, Poikane S. 2013. Ecological status assessment of European lakes: a comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia 407: 57–74. [Google Scholar]
  • MacGregor-Fors I. 2011. Misconceptions or misunderstandings? On the standardization of basic terms and definitions in urban ecology. Landsc Urban Plan 100: 347–349. [Google Scholar]
  • Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1: 493–509. [Google Scholar]
  • Marie B, Huet H, Marie A, Djediat C, Pusieux-Dao A, Trinchet C, Edery M. 2012. Effects of a toxic cyanobacterial bloom (Planktothrix agardhii) on fish: insights from istopathological and quantitative proteomic assessments following the oral exposure of medaka fish (Oryzias latipes). Aquat Toxicol 114: 39–48. [CrossRef] [PubMed] [Google Scholar]
  • Marker AFH, Nusch A, Rai H, Riemann B. 1980. The measurement of photosynthetic pigments in freshwater and standardization of methods: conclusions and recommendations. Arch Hydrobiol Beih Ergebn Limnol 14: 91–106. [Google Scholar]
  • Meerhoff M, Mazzeo N, Moss B, Rodríguez-Gallego L. 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquat Ecol 37: 377–391. [Google Scholar]
  • Meyer JL. 1997. Stream health: incorporating the human dimension to advance stream ecology. J N Am Benthol Soc 16: 439–447. [CrossRef] [Google Scholar]
  • Naselli-Flores L, Barone R. 2011. Fight on plankton! Or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogam Algol 32: 157–204. [CrossRef] [Google Scholar]
  • Olding D, Hellebust A, Douglas M. 2000. Phytoplankton community composition in relation to the water quality and water-body morphometry in urban lakes, reservoirs, and ponds. Can J Fish Aquat Sci 57: 2163–2174. [Google Scholar]
  • Padisák J, Soróczki-Pintér E, Rezner Z. 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity plankton: an experimental study. Hydrobiologia 500: 243–257. [Google Scholar]
  • Padisák J, Grigorszky I, Borics G, Soróczki-Pintér E. 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553: 1–14. [Google Scholar]
  • Padisák J, Crossetti LO, Naselli-Flores L. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19. [Google Scholar]
  • Pickett STA, Cadenasso ML. 2006. Advancing urban ecological studies: frameworks, concepts, and results from the Baltimore ecosystem study. Austral Ecol 31: 114–125. [Google Scholar]
  • Platt T, Denman K. 1978. The Structure of Pelagic Ecosystem. Rapports et Proces-Verbaux des Reunions, Conseil Permanent International pour l'Exploration de la Mer, 173: 60–65. [Google Scholar]
  • Qiu D, Zhenbin W, Baoyuan L, Jiaqi D, Guiping F, Feng H. 2001. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China. Ecol Eng 18: 147–156. [Google Scholar]
  • Reynolds CS. 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarctic Ecol 3: 141–159. [Google Scholar]
  • Reynolds CS. 1988a. Functional morphology and the adaptive strategies of freshwater phytoplankton. In: Sandgren CD, ed. Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge: Cambridge University Press, pp. 388–433. [Google Scholar]
  • Reynolds CS. 1988b. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Verh Internat Verein Limnol 23: 683–691. [Google Scholar]
  • Reynolds CS. 2006. The Ecology of Phytoplankton. Cambridge: Cambridge University Press. [CrossRef] [Google Scholar]
  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428. [Google Scholar]
  • Rodríguez-Flores C. 2017. Estructura y dinámica del fitoplancton de tres estanques urbanos de la ciudad de Buenos Aires: análisis de floraciones en época estival (2014–2015). Tesis Magìster Universidad de Buenos Aires. [Google Scholar]
  • Rodríguez P, De Tezanos Pinto P, Sinistro S, Pizarro H. 2003. Estudio del estado trófico del lago Lugano (Parque Roca, ciudad de Buenos Aires) Primer informe de avance − 21 de Abril al 22 de julio de 2003. Control De Lagos De La Ciudad De Buenos Aires. Dirección General de Política y Evaluación Ambiental Gobierno de la Ciudad Autónoma de Buenos Aires Departamento de Ecología, Genética y Evolución Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, 25. [Google Scholar]
  • Salmaso N, Padisak J. 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112. [Google Scholar]
  • Salmaso N, Naselli-Flores L, Padisák J. 2015. Functional classifications and their application in phytoplankton ecology. Freshw Biol 60: 603–619. [Google Scholar]
  • Scasso F, Mazzeo N, Gorga J, Kruk C, Lacerot G, Clemente J, Fabián D, Bonilla S. 2001. Limnological changes in a sub-tropical shallow hypertrophic lake during its restoration: two years of a whole-lake experiment. Aquat Conserv 11: 31–44. [Google Scholar]
  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E. 1993. Alternative equilibria in shallow lakes. Trends Ecol Evol 8: 275–279. [CrossRef] [PubMed] [Google Scholar]
  • Scheffer M, Rinaldi S, Gragnani A, Mur L, Van Nes EH. 1997. On the dominance of filamentous Cyanobacteria in shallow, turbid lakes. Ecology 78: 272–282. [Google Scholar]
  • Segura AM, Kruk C, Calliari D, Fort H. 2013. Use of a morphology-based functional approach to model phytoplankton community succession in a shallow subtropical lake. Freshw Biol 58: 504–512. [Google Scholar]
  • Shochat E, Warren PS, Faeth SH, McIntyre NE, Hope D. 2006. From patterns to emerging processes in mechanistic urban ecology. TRENDS Ecol Evol 21: 186–191. [CrossRef] [PubMed] [Google Scholar]
  • Sinistro R, Rodríguez P, De Tezanos Pinto P, Pizarro H. 2004. Estudio del estado trófico del lago Lugano (Parque Roca, Ciudad de Buenos Aires). Informe Técnico Final − 1 de Abril al 31 de Diciembre de 2003. Control de Lagos de la Ciudad de Buenos Aires. Dirección General de Política y Evaluación Ambiental. Gobierno de la Ciudad Autónoma de Buenos Aires. Departamento de Ecología, Genética y Evolución Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires. [Google Scholar]
  • Stanca E, Cellamare M, Basset A. 2013. Geometric shape as a trait to study phytoplankton distributions in aquatic ecosystems. Hydrobiologia 701: 99–116. [Google Scholar]
  • Taranu ZE, Gregory-Eaves I, Leavitt PR, Bunting L, Buchaca T, Catalan J, Domaizon I, Guilizzoni P, Lami A, Mcgowan S, Moorhouse H, Morabito G, Pick FR, Stevenson MA, Thompson PL, Vinebrooke RD. 2015. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol Lett 18: 375–384. [Google Scholar]
  • ter Braak CJF, Verdonschot PFM. 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57: 255–289. [Google Scholar]
  • Tolotti M, Thies H, Nickus U, Psenner R. 2012. Temperature modulated effects of nutrients on phytoplankton changes in a mountain lake. Hydrobiologia 698: 61–75. [Google Scholar]
  • Tonk L, Visser PM, Christiansen G, Dittmann E, Snelder EOFM, Wiedner C, Mur LR, Huisman J. 2005. The microcystin composition of the Cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. Appl Environ Microbiol 71: 5177–5181. [Google Scholar]
  • Toporowska M, Pawlik-Skowrońska B. 2014. Four-year study on phytoplankton biodiversity in a small hypertrophic lake affected by water blooms of toxigenic cyanobacteria. Pol J Environ Stud 23: 491–499. [Google Scholar]
  • Ütermöhl H. 1958. Zur Vervollkommnung der quantitative Phytoplankton Methodik. Mitt Internat Ver Limnol 9: 1–38. [Google Scholar]
  • Valderrama JC. 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar Chem 10: 109–122. [Google Scholar]
  • van der Bruggen B, Borghgraef K, Vinckier C. 2010. Causes of water supply problems in urbanised regions in developing countries. Water Resour Manag 24: 1885–902. [CrossRef] [Google Scholar]
  • Waajen GWAM. 2017. Eco-engineering for clarity: clearing blue-green ponds and lakes in an urbanized area. PhD thesis, Wageningen University, The Netherlands, 308 p. [Google Scholar]
  • Waajen GWAM, Faasen EJ, Lürling M. 2014. Eutrophic urban ponds suffer from cyanobacterial blooms: Dutch examples. Environ Sci Pollut Res 21: 9983–9994. [CrossRef] [Google Scholar]
  • Weithoff G. 2003. The concepts of “plant functional types” and “functional diversity” in lake phytoplankton: a new understanding of phytoplankton ecology? Freshw Biol 48: 1669–1675. [Google Scholar]
  • WWAP (World Water Assessment Programme). 2012. The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk. UNESCO, Paris. [Google Scholar]
  • Xiangcan J. 2003. Analysis of eutrophication state and trend for lakes in China. J Limnol 62: 60–66. [Google Scholar]
  • Yu J, Liu Z, Li K, Chen F, Guan B, Hu Y, Zhong P, Tang Y, Zhao X, He H, Zeng H, Jeppesen E. 2016. Restoration of shallow lakes in subtropical and tropical China: response of nutrients and water clarity to biomanipulation by fish removal and submerged plant transplantation. Water 8: 438–450. [Google Scholar]
  • Zar JH. 1999. Biostatistical Analysis, 4th ed. New Jersey: Prentice Hall. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.