Issue
Knowl. Manag. Aquat. Ecosyst.
Number 419, 2018
Topical issue on Crayfish
Article Number 36
Number of page(s) 8
DOI https://doi.org/10.1051/kmae/2018024
Published online 24 September 2018
  • Abdel-Kader SM. 2016. Some ecological and toxicological studies on crayfish, Procambarus clarkii at Sharkia governorate, Egypt. J Basic Appl Zool 74: 62–67. [CrossRef] [Google Scholar]
  • Arbogast RT, Carthon M. 1971. Humidity response of the larvae of Oryzaephilus surinamensis (Coleoptera: Curcujidae). Ann Entomol Soc Am 64: 90–93. [CrossRef] [Google Scholar]
  • Banha F, Anastácio P. 2014. Desiccation survival capacities of two invasive crayfish species. Knowl Manag Aquat Ecosyst 413: 1–5. [CrossRef] [Google Scholar]
  • Barbaresi S, Gherardi F. 2006. Experimental evidence for homing in the red swamp crayfish, Procambarus clarkii. Bull Fr Pêche Piscic 380–381: 1145–1154 [CrossRef] [Google Scholar]
  • Burggren WW, McMahon BR. 1981. Hemolymph oxygen transport, acid-base status, and hydromineral regulation during dehydration in three terrestrial crabs, Cardisoma, Birgus, and Coenobita. J Exp Zool 218: 53–64. [CrossRef] [Google Scholar]
  • Carreira BM, Segurado P, Laurila A, Rebelo R. 2017. Can heat waves change the trophic role of the world’s most invasive crayfish? Diet shifts in Procambarus clarkii. PLOS ONE| https://doi.org/10.1371/journal.pone.0183108. [Google Scholar]
  • Chucholl C. 2011. Population ecology of an alien “warm water” crayfish (Procambarus clarkii) in a new cold habitat. Knowl Manag Aquatic Ecosyst 401: 1–21. [Google Scholar]
  • Correia AM, Ferreira O. 1995. Burrowing behavior of the introduced red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae) in Portugal. J Crustac Biol 15: 248–257. [CrossRef] [Google Scholar]
  • Derby CD, Sorensen PW. 2008. Neural processing, perception, and behavioural responses to natural chemical stimuli by fish and crustaceans. J Chem Ecol 34: 898–914. [CrossRef] [PubMed] [Google Scholar]
  • Dick JTA, Elwood RW, Montgomery WI. 1995. The behavioral basis of a species replacement: differential aggression and predation between the introduced Gammarus pulex and the native G. duebenicelticus (Amphipoda). Behav Ecol Sociobiol 37: 393–398. [CrossRef] [Google Scholar]
  • Dörr AJM, Pedicillo G, Lorenzoni M. 2001. Prima segnalazione in Umbria di Procambarus clarkii (Girard), Orconectes limosus (Rafinesque) e Astacus leptodactylus Eschscholtz, (Crustacea Decapoda). Riv Idrobiol 40: 2–3. [Google Scholar]
  • Dörr AJM, La Porta G, Pedicillo G, Lorenzoni M. 2006. Biology of Procambarus clarkii (Girard, 1852) in Lake Trasimeno. Bull Fr Pêche Piscic 380–381: 1155–1168. [CrossRef] [Google Scholar]
  • Dörr AJM, Rodolfi M, Scalici M, Elia AC, Garzoli L, Picco AM. 2011. Phoma glomerata, a potential new threat to Italian inland waters. J Nat Conserv 19: 370–373. [CrossRef] [Google Scholar]
  • Dörr AJM, Elia AC, Rodolfi M, et al. 2012a. A model of co-occurrence: segregation and aggregation patterns in the mycoflora of the crayfish Procambarus clarkii in Lake Trasimeno (central Italy). J Limnol 71: 135–143. [Google Scholar]
  • Dörr AJM, Rodolfi M, Elia AC, Scalici M, Garzoli L, Picco AM. 2012b. Mycoflora on the cuticle of the invasive crayfish Procambarus clarkii. Fundam Appl Limnol 180/1: 77–84 [CrossRef] [Google Scholar]
  • Dörr AJM, Scalici M. 2013. Revisiting reproduction and population structure and dynamics of Procambarus clarkii eight years after its introduction into Lake Trasimeno (Central Italy). Knowl Manag Aquat Ecosyst 408: 10–16. [CrossRef] [Google Scholar]
  • Filingeri D, Redortier B, Hodder S, Havenith G. 2014. Thermal and tactile interactions in the perception of local skin wetness at rest and during exercise in thermo-neutral and warm environments. Neuroscience 258: 121–130. [CrossRef] [PubMed] [Google Scholar]
  • Filingeri D. 2015. Humidity sensation, cockroaches, worms, and humans: are common sensory mechanisms for hygrosensation shared across species? J Neurophysiol 114: 763–767. [CrossRef] [PubMed] [Google Scholar]
  • Furse JM, Wild CH, Villamar NN. 2004. In-stream and terrestrial movements of Euastacus sulcatus in the Gold Coast hinterland: developing and testing a method of accessing freshwater crayfish movements. Freshw Crayfish 14: 213–220. [Google Scholar]
  • Gamradt SC, Katz LB, Anzalone CB. 1997. Aggression by non-native crayfish deters breeding in California newts. Conserv Biol 11: 793–796. [CrossRef] [Google Scholar]
  • Gherardi F. Behaviour. In: Holdich DM, ed. Biology of freshwater crayfish. Oxford: Blackwell Science, 2001, pp. 258–290. [Google Scholar]
  • Gherardi F. 2006. Crayfish invading Europe: the case study of Procambarus clarkii. Mar Freshw Behav Physiol 39: 175–191. [CrossRef] [Google Scholar]
  • Gutiérrez-Yurrita PJ, Martínez JM, Bravo-Utrera MÁ, Montes C, Ilhéu M, Bernardo JM. The status of crayfish populations in Spain and Portugal. In: Gherardi F, Holdich DM, ed. Crayfish in Europe as alien species: how to make the best of a bad situation? Rotterdam: A.A. Balkema, 1999, pp. 161–192. [Google Scholar]
  • Herrmann A, Schnabler A, Martens A. 2018. Phenology of overland dispersal in the invasive crayfish Faxonius immunis (Hagen) at the Upper Rhine River area. Knowl Manag Aquat Ecosyst 419: 30. [CrossRef] [Google Scholar]
  • Hobbs HH. 1981. The crayfishes of Georgia. Smithson Contrib Zool 318: 1–549. [CrossRef] [Google Scholar]
  • Hobbs HH. Crayfish distribution, adaptive radiation, and evolution. In: Holdich DM, Lowery RS, ed. Freshwater crayfish: biology, management and exploitation. London: Croom Helm, 1988, pp. 52–82. [Google Scholar]
  • Huner JV. Procambarus. In: Holdich DM, ed. Biology of freshwater crayfish. Oxford: Blackwell Science, 2002, pp. 541–584. [Google Scholar]
  • Huner JV, Barr JE. 1991. Red swamp crayfish: biology and exploitation. The Louisiana Sea Grant College Program, Center for Wetland Resources. Baton Rouge, LA: Louisiana State University. [Google Scholar]
  • Johnson LE, Carlton JT. 1996. Post-establishment spread in large-scale invasions: dispersal mechanisms of the zebra mussel (Dreissena polymorpha). Ecology 77: 1686–1687. [CrossRef] [Google Scholar]
  • Koch LM, Patullo BW, Macmillan DL. 2006. Exploring with damaged antennae: do crayfish compensate for injuries? J Exp Biol 209: 3226–3233. [CrossRef] [PubMed] [Google Scholar]
  • Kouba A, Tíkal J, Císař P, et al. 2016. The significance of droughts for hyporheic dwellers: evidence from freshwater crayfish. Sci Rep 6: 26569 [CrossRef] [PubMed] [Google Scholar]
  • Lewis MA. Variability, patchiness and jump dispersal in the spread of an invading population. In: Tilman D, Kareiva P, ed. Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton: Princeton University Press, 1998, pp. 46–69. [Google Scholar]
  • Lindqvist OV, Huner JV. Life history characteristics of crayfish: What makes some of them good colonizers? In: Gherardi F, Holdich DM, ed. Crayfish in Europe as alien species: how to make the best of a bad situation? Rotterdam: A.A. Balkema, 1999, pp. 23–30. [Google Scholar]
  • Lodge DM, Taylor CA, Holdich DM, Skurdal J. 2000. Nonindigenous crayfish threaten North American freshwater biodiversity: lessons from Europe. Fisheries 25: 7–19. [CrossRef] [Google Scholar]
  • Loureiro TG, Anastácio PMSG, Araujo PB, Souty-Grosset C, Almerão MP. 2015. Red swamp crayfish: biology, ecology and invasion − an overview. Nauplius 23: 1–19. [CrossRef] [Google Scholar]
  • Madge DS. 1961. The control of relative humidity with aqueous solutions of sodium hydroxide. Entomol Exp Appl 4: 143–147. [CrossRef] [Google Scholar]
  • Marchetti MP, Moyle PB, Levine R. 2004. Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California. Freshw Biol 49: 646–661. [CrossRef] [Google Scholar]
  • Marques M, Banha F, Àguas M, Anastácio P. 2015. Environmental cues during overland dispersal by three freshwater invaders: Eriocheir sinensis, Pacifastacus leniusculus, and Procambarus clarkii (Crustacea, Decapoda). Hydrobiologia 742: 81–93. [CrossRef] [Google Scholar]
  • McCarthy B, Zukowski S, Whiterod N, Vilizzi L, Beesley L, King A. 2014. Hypoxic blackwater event severely impacts Murray crayfish (Euastacus armatus) populations in the Murray River, Australia. Austral Ecol 39: 491–500. [CrossRef] [Google Scholar]
  • McMahon BR. Physiological adaptation to environment. In: Holdich DM, ed. Biology of freshwater crayfish. Oxford: Blackwell Science, 2002, pp. 327–376. [Google Scholar]
  • Morgan GJ. 1991. The spiny freshwater crayfish of Queensland. Qld Nat 31: 29–36. [Google Scholar]
  • Piersanti S, Rebora M, Salerno G, Gaino E. 2007. Behavioural strategies of the larval dragonfly Libellula depressa (Odonata: Libellulidae) in drying pools. Ethol Ecol Evol 19: 127–136. [CrossRef] [Google Scholar]
  • Piersanti S, Rebora M, Almaas TJ, Salerno G, Gaino E. 2011. Electrophysiological identification of thermo- and hygro-sensitive receptor neurons on the antennae of the dragonfly Libellula depressa. J Insect Physiol 57: 1391–1398. [CrossRef] [PubMed] [Google Scholar]
  • Rebora M, Piersanti S, Salerno G, Conti E, Gaino E. 2007. Water deprivation tolerance and humidity response in a larval dragonfly: a possible adaptation for survival in drying ponds. Physiol Entomol 32: 121–26. [CrossRef] [Google Scholar]
  • Reynolds DJ, Souty-Grosset C, Richardson AMM. 2013. Ecological role of crayfish in freshwater and terrestrial habitats. Freshw Crayfish 19: 197–2018. [Google Scholar]
  • Russell J, Vidal-Gadea AG, Makay A, Lanam C, Pierce-Shimomura JT. 2014. Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans. Proc Natl Acad Sci USA 111: 8269–8274. [CrossRef] [Google Scholar]
  • Sokal RR, Rohlf FJ. 1998. Biometry. New York: Freeman WE. [Google Scholar]
  • Souty-Grosset C, Holdich DM, Noel PY, Reynolds JD, Haffner P. 2006. Atlas of Crayfish in Europe. Publications Scientifiques du Muséum national d'Histoire naturelle. Paris: Patrimoines Naturels. [Google Scholar]
  • Souty-Grosset C, Anastácio PM, Aquiloni L, Banha F, Choquer J, Chucholl C, Tricarico E. 2016. Impacts of the red swamp crayfish Procambarus clarkii on European aquatic ecosystems and human well-being. Limnologica 58: 78–93. [CrossRef] [Google Scholar]
  • Statsoft Inc. 2001. Statistica (data analysis software system) version 6. Vigonza: StatSoft Italia S.R.L. [Google Scholar]
  • Steinbrecht RA. 1998. Bimodal thermo- and hygrosensitive sensilla. In: Harrison FW, Locke M, ed. Microscopic anatomy of invertebrates 11B. New York: Wiley-Liss, pp. 405–422. [Google Scholar]
  • Tichy H, Loftus R. 1996. Hygroreceptors in insects and a spider: humidity transduction models. Naturwissenschaften 83: 255–263. [Google Scholar]
  • Usio N, Konishi M, Nakano S. 2001. Species displacement between an introduced and a “vulnerable” crayfish: the role of aggressive interactions and shelter competition. Biol Invasions 3: 179–185. [CrossRef] [Google Scholar]
  • Vilà M, Basnou C, Pysêk P, et al. 2009. How well do we understand the impacts of alien species on ecological services? A pan-European cross-taxa assessment. Front Ecol Environ 8:135–144. [CrossRef] [Google Scholar]
  • Williamson DI. 1951. Studies in the biology of Talitridae (Crustacea, Amphipoda): effects of atmospheric humidity. J Mar Biol Assoc UK 30: 73–89. [CrossRef] [Google Scholar]
  • Ziegler A, Altner H. 1995. Are the most numerous sensilla of terrestrial isopods hygroreceptors? Ultrastructure of the dorsal tricorn sensilla of Porcellio scaber. Cell Tissue Res 282: 135–145. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.