Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 419, 2018
Article Number 33
Number of page(s) 10
DOI https://doi.org/10.1051/kmae/2018020
Published online 24 September 2018
  • APHA. 1999. Standard methods for the examination of water and wastewater, 20th ed. Washington, DC: American Public Health Association. [Google Scholar]
  • Balvert SF, Duggan IC, Hogg ID. 2009. Zooplankton seasonal dynamics in a recently filled mine pit lake: the effect of non-indigenous Daphnia establishment. Aquat Ecol 43: 403–413. [CrossRef] [Google Scholar]
  • Beisner BE. 2001. Herbivory in variable environments: an experimental test of the effects of vertical mixing and Daphnia on phytoplankton community structure. Can J Fish Aquat Sci 58: 1371–1379. [CrossRef] [Google Scholar]
  • Bian Z, Inyang HI, Daniels JL, Otto F, Struthers S. 2010. Environmental issues from coal mining and their solutions. Min Sci Technol 20: 0215–0223. [Google Scholar]
  • Bielańska-Grajner I, Cudak A. 2014. Effects of salinity on species diversity of Rotifers in anthropogenic water bodies. Pol J Environ Stud 23: 27–34. [Google Scholar]
  • Bielańska-Grajner I, Gładysz A. 2010. Planktonic rotifers in mining lakes in the Silesian Upland: relationship to environmental parameters. Limnologica 40: 67–72. [CrossRef] [Google Scholar]
  • Bielańska-Grajner I, Cudak A, Biała A, Szymańczak R, Sell J. 2014. Role of spatial and environmental factors in shaping the rotifer metacommunity in anthropogenic water bodies. Limnology 15: 173–183. [CrossRef] [Google Scholar]
  • Błędzki LA, Rybak JI. 2016. Freshwater crustacean zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida). Key to species identification with notes on ecology, distribution, methods and introduction to data analysis. Springer, 918 p. [Google Scholar]
  • Boix D, Gascón S, Sala J, Badosa A, Brucet S, López-Flores R, Martinoy M, Gifre J, Quintana XD. 2008. Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597: 53–69. [CrossRef] [Google Scholar]
  • Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbicht-Ilkowska A, Kurasawa H, Larsson P, Wegleńska T. 1976. A review of some problems in zooplankton production studies. Nor J Zool 24: 419–456. [Google Scholar]
  • Carlson RE. 1977. A trophic state index for lakes. Limnol Oceanogr 22: 361–369. [Google Scholar]
  • de Vincente I, Jensen HS, Andersen FØ. 2008. Factors affecting phosphate adsorption to aluminum in lake water: implications for lake restoration. Sci Total Environ 389: 29–36. [CrossRef] [PubMed] [Google Scholar]
  • Dodson SI, Arnott SE, Cottingham KL. 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81: 2662–2679. [CrossRef] [Google Scholar]
  • Dodson SI, Everhart WR, Jandl AK, Krauskopf SJ. 2007. Effect of watershed land use and lake age on zooplankton species richness. Hydrobiologia 579: 393–399. [CrossRef] [Google Scholar]
  • Ejsmont-Karabin J. 1998. Empirical equations for biomass calculation of planktonic rotifers. Pol Arch Hydr 45: 513–522. [Google Scholar]
  • Ejsmont-Karabin J. 2012. The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index. Pol J Ecol 60: 339–350. [Google Scholar]
  • Ejsmont-Karabin J. 2013. An analysis based on rotifer indices of the effect of water and sewage management on the water quality in the system of interconnected glacial lakes. Limnol Rev 13: 191–195. [CrossRef] [Google Scholar]
  • Ejsmont-Karabin J, Radwan S, Bielańska-Grajner I. 2004. Rotifers. Monogononta–atlas of species. Polish freshwater fauna. Łódź: Univ of Łódź, 447 p. (in Polish). [Google Scholar]
  • Ferrari CR, de Azevedo H, Wisniewski MJS, Rodgher S, Roque CV, Nascimento MRL. 2015. An overview of an acidic uranium mine pit lake (Caldas, Brazil): composition of the zooplankton community and limnochemical aspects. Mine Water Environ 34: 343–351. [CrossRef] [Google Scholar]
  • Flössner D. 1972. Krebstiere, Crustacea. Kiemen-und Blattfüsser, Branchiopoda, Fischläuse, Branchiura. Jena: VEB Gustav Fischer Verlag, 382 p. (in German). [Google Scholar]
  • Gilbert JJ. 1988. Suppresion of rotifer populations by Daphnia, a review of the evidence, the mechanism and the effects on zooplankton community structure. Limnol Oceanogr 33: 1286–1303. [CrossRef] [Google Scholar]
  • Goedcoop W, Pettersson K. 2000. Seasonal changes in sediments phosphorus forms in relation to sedimentation and benthic bacterial biomass in Lake Erken. Hydrobiologia 431: 41–50. [CrossRef] [Google Scholar]
  • Goździejewska A, Tucholski S. 2011. Zooplankton of fish culture ponds periodically fed with treated wastewater. Pol J Environ Stud 20: 67–79. [Google Scholar]
  • Goździejewska A, Glińska-Lewczuk K, Obolewski K, Grzybowski M, Kujawa R, Lew S, Grabowska M. 2016. Effects of lateral connectivity on zooplankton community structure in floodplain lakes. Hydrobiologia 774: 7–21. [CrossRef] [Google Scholar]
  • Hammer UT. 1993. Zooplankton distribution and abundance in saline lakes of Alberta and Saskatchewan, Canada. Int J Salt Lake Res 2: 111. [CrossRef] [Google Scholar]
  • Kasprzak K, Niedbała W. 1981. Biocenotic indices in quantitative study. In Górny M, Grüm L eds. Methods applied in soil zoology. Warsaw: PWN, pp. 396–416. [Google Scholar]
  • Kerfoot WC, Sih A. 1987. Predation. Direct and Indirect Impacts on Aquatic communities. Hanover: University Press of New England, 160 p. [Google Scholar]
  • Koste W. 1978. Rotatoria. Die Rädertiere Mitteleuropas. Überordnung Monogononta. I Textband, II Tafelband. Berlin: Gebrüder Borntraeger, pp. 52–570. (in German). [Google Scholar]
  • Kovach WL. 2015. MVSP − a Multivariate statistical package for windows, ver. 3.2. Wales, U.K: Kovach Computing Services Pentraeth. [Google Scholar]
  • Kratzer CR, Brezonik PL. 1981. A Carlson-type trophic state index for nitrogen in Florida lakes. Water Res Bull 17: 713–715. [Google Scholar]
  • Lapčík V, Lapčíková M. 2011. Environmental impact assessment of surface mining. Inżynieria Mineralna. J Pol Mineral Eng Soc 1/6: 1–10. [Google Scholar]
  • Mallo JC, De Marco SG, Bazzini SM, del Rıo JL. 2010. Aquaculture: an alternative option for the rehabilitation of old mine pits in the Pampasian region, southeast of Buenos Aires, Argentina. Mine Water Environ 29: 285–293. [CrossRef] [Google Scholar]
  • Marszelewski W, Dembowska E, Napiórkowski P, Solarczyk A. 2017. Understanding abiotic and biotic conditions in post-mining pit lakes for efficient management: a case study (Poland). Mine Water Environ 36: 418–428. [CrossRef] [Google Scholar]
  • May L. 1980. On the ecology on the Notholca squamula Müller in Loch Leven, Kinross, Scotland. Hydrobiologia 73: 177–180. [CrossRef] [Google Scholar]
  • Mayer J, Dokulil MT, Salbrechter M, Berger M, Posch T, Pfister G, Kirchner AK, Velimirov B, Steitz A, Ulbricht T. 1997. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia 342/343: 165–174. [CrossRef] [Google Scholar]
  • Merrix-Johnes FL, Thackeray SJ, Ormerod SJ. 2013. A global analysis of zooplankton in natural and artificial fresh waters. J Limnol 72: 140–153. [Google Scholar]
  • Moser M, Weisse T. 2011. The most acidified Austrian lake in comparison to a neutralized mining lake. Limnologica 41: 303–315. [CrossRef] [PubMed] [Google Scholar]
  • Nixdorf B, Lessmann D, Deneke R. 2005. Mining lakes in disturbed landscape: Apliccation of the EC Water Framework Directive and future management strategies. Ecol Eng 24: 67–73. [CrossRef] [Google Scholar]
  • Pociecha A. 2008. Density dynamics of Notholca squamula salina Focke (Rotifera) in Lake Wujka, a freshwater Antarctic lake. Polar Biol 31: 275–279. [CrossRef] [Google Scholar]
  • Pociecha A, Bielańska-Grajner I. 2015. Large-scale assessment of planktonic organisms biodiversity in artificial water reservoirs in Poland. IOP PAN, Kraków, 269 p. (in Polish). [Google Scholar]
  • Pociecha A, Bielańska-Grajner I, Szarek-Gwiazda E, Wilk-Woźniak E, Kuciel H, Walusiak E. 2017. Rotifer diversity in the acidic pyrite mine pit lakes in the Sudety Mountains (Poland). Mine Water Environ https://doi.org/10.1007/s10230-017-0492-y. [Google Scholar]
  • Rönicke H, Schultze M, Neumann V, Nitsche C, Tittel J. 2010. Changes of the plankton community composition during chemical neutralisation of the Bockwitz pit lake. Limnologica 40: 191–198. [CrossRef] [Google Scholar]
  • Ruttner-Kolisko A. 1977. Suggestions for biomass calculation of planktonic rotifers. Arch Hydrobiol Beih Ergebn Limnol 8: 71–76. [Google Scholar]
  • Rybak JI, Błędzki LA. 2010. Freshwater planktonic crustaceans. Warsaw: Warsaw University Press, 307 p. (in Polish). [Google Scholar]
  • Rzętała M. 2008. Functioning of water reservoirs and the course of limnic processes under conditions of varied anthropopression a case study of Upper Silesian Region. Katowice: Silesian University Press, 165 p. (in Polish). [Google Scholar]
  • Sienkiewicz E, Gąsiorowski M. 2016. The evolution of a mining lake − from acidity to natural neutralization. Sci Total Environ 557: 343–354. [CrossRef] [PubMed] [Google Scholar]
  • Skowronek E, Cudak A, Bielańska-Grajner I. 2012. Effect of recreation on the species richness and diversity of rotifers in ponds. J Water Res Prot 4: 795–799. [CrossRef] [Google Scholar]
  • Sloss L. 2013. Coal mine site reclamation. Iea Clean Coal Centre, CCC/216 ISBN 978-92-9029-536-5, 70 p. [Google Scholar]
  • Špoljar M, Dražina T, Habdija I, Meseljević M, Grjčić Z. 2011. Contrasting zooplankton assemblages in two oxbow lakes with low transparencies and narrow emergent macrophyte belts (Krapina River, Croatia). Int Rev Hydrobiol 96: 175–190. [CrossRef] [Google Scholar]
  • Stottmeister U, Mudroch A, Kennedy Ch, Matiova Z, Sanecki J, Svoboda I. 2002. Reclamation and regeneration of landscapes after brown coal opencast mining in six different countries. In: Mudroch A, et al., eds. Remediation of abandoned surface coal mining sites. Springer − Verlag Berlin Heidelberg, 33 p. [Google Scholar]
  • Sutela T, Huusko A. 2000. Varying resistance of zooplankton prey to digestion: implications for quantifying larval fish diets. Trans Am Fish Soc 129: 545–551. [CrossRef] [Google Scholar]
  • ter Braak CJF, Šmilauer P. 2002. CANOCO reference manual and canodraw for windows user's guide: software for canonical community ordination (version 4.5). Ithaca, NY, (USA) (www.canoco.com): Microcomputer Power, 2002 p. [Google Scholar]
  • Tilman D, Kilham SS, Kilham P. 1982. Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13: 349–372. [CrossRef] [Google Scholar]
  • van Donk E, Kilham SS. 1990. Temperature effects on silicon- and phosphorus-limited growth and competitive interactions among three diatoms. J Phycol 26: 40–50. [CrossRef] [Google Scholar]
  • von Sperling E, Grandcham CAP. 2010. Formation of a deep pit lake: case study of Aguas Claras, Brasil. Int J Min Environ 1: 49–54. [Google Scholar]
  • Younger PL, Wolkersdorfer CH. 2004. Mining impacts on the fresh water environment: technical and managerial guidelines for catchment scale management. Mine Water Environ 23: S2–S80. [CrossRef] [Google Scholar]
  • Żurek R. 2006. Zooplankton of a flooded opencast sulphur mine. Aquat Ecol 40: 177–202. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.