Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 58
Number of page(s) 11
DOI https://doi.org/10.1051/kmae/2017044
Published online 27 November 2017
  • Ahmadi-Nedushan B, St-Hilaire A, Bérubé M, Robichaud É, Thiémonge N, Bobée B. 2006. A review of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment. River Res Appl 22: 503–523. [CrossRef] [Google Scholar]
  • Ali MM, Soltan MA. 2006. Expansion of Myriophyllum spicatum (Eurasian water milfoil) into Lake Nasser, Egypt: invasive capacity and habitat stability. Aquat Bot 84: 239–244. [CrossRef] [Google Scholar]
  • Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43: 1223–1232. [CrossRef] [Google Scholar]
  • Angradi TR, Pearson MS, Bolgrien DW, Bellinger BJ, Starry MA, Reschke C. 2013. Predicting submerged aquatic vegetation cover and occurrence in a Lake Superior estuary. J Great Lakes Res 39: 536–546. [CrossRef] [Google Scholar]
  • Araújo MB, Luoto M. 2007. The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16: 743–753. [CrossRef] [Google Scholar]
  • Austin MP. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157: 101–118. [CrossRef] [Google Scholar]
  • Austin MP. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200: 1–19. [CrossRef] [Google Scholar]
  • Austin MP, Meyers JA. 1996. Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity. For Ecol Manage 85: 95–106. [CrossRef] [Google Scholar]
  • Barko J, Adams M, Clesceri N. 1986. Environmental factors and their consideration in the management of submersed aquatic vegetation: a review. J Aquat Plant Manage 24: 1–10. [Google Scholar]
  • Beck KG, Zimmerman K, Schardt JD, et al. 2008. Invasive species defined in a policy context: recommendations from the Federal Invasive Species Advisory Committee. Invasive Plant Sci Manage 1: 414–421. [CrossRef] [Google Scholar]
  • Benda L, Andras K, Miller D, Bigelow P. 2004. Confluence effects in rivers: interactions of basin scale, network geometry, and disturbance regimes. Water Resour Res 40: W05402. [CrossRef] [Google Scholar]
  • Borchers DL, Buckland ST, Priede IG, Ahmadi S. 1997. Improving the precision of the daily egg production method using generalized additive models. Can J Fish Aquat Sci 54: 2727–2742. [CrossRef] [Google Scholar]
  • Bornette G, Puijalon S. 2011. Response of aquatic plants to abiotic factors: a review. Aquat Sci 73: 1–14. [CrossRef] [Google Scholar]
  • Bučas M, Bergström U, Downie A-L, et al. 2013. Empirical modelling of benthic species distribution, abundance, and diversity in the Baltic Sea: evaluating the scope for predictive mapping using different modelling approaches. ICES J Mar Sci 70: 1233–1243. [CrossRef] [Google Scholar]
  • Buchan LAJ, Padilla DK. 2000. Predicting the likelihood of Eurasian watermilfoil presence in lakes, a macrophyte monitoring tool. Ecol Appl 10: 1442–1455. [CrossRef] [Google Scholar]
  • Buisson L, Blanc L, Grenouillet G 2008. Modelling stream fish species distribution in a river network: the relative effects of temperature versus physical factors. Ecol Freshwater Fish 17: 244–257. [CrossRef] [Google Scholar]
  • Bunn SE, Arthington AH. 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manage 30: 492–507. [CrossRef] [PubMed] [Google Scholar]
  • Burnham K, Anderson D. 1998. Model selection and inference: a practical information-theoretic approach. New York: Springer. [CrossRef] [Google Scholar]
  • Camporeale C, Ridolfi L. 2006. Riparian vegetation distribution induced by river flow variability: a stochastic approach. Water Resour Res 42: W10415. [CrossRef] [Google Scholar]
  • Canfield D, Langeland K, Linda S, Haller W. 1985. Relations between water transparency and maximum depth of macrophyte colonization in lakes. J Aquat Plant Manage 23: 25–28. [Google Scholar]
  • Chambers PA, DeWreede RE, Irlandi EA, Vandermeulen H. 1999. Management issues in aquatic macrophyte ecology: a Canadian perspective. Can J Bot 77: 471–487. [Google Scholar]
  • Chappuis E, Gacia E, Ballesteros E. 2014. Environmental factors explaining the distribution and diversity of vascular aquatic macrophytes in a highly heterogeneous Mediterranean region. Aquat Bot 113: 72–82. [CrossRef] [Google Scholar]
  • Cheng YW, Gallinat MP. 2004. Statistical analysis of the relationship among environmental variables, inter-annual variability and smolt trap efficiency of salmonids in the Tucannon River. Fish Res 70: 229–238. [CrossRef] [Google Scholar]
  • Clayton J, Edwards T. 2006. Aquatic plants as environmental indicators of ecological condition in New Zealand lakes. Hydrobiologia 570: 147–151. [CrossRef] [Google Scholar]
  • Cook CDK, Lüönd R. 1982. A revision of the genus Hydrilla (Hydrocharitaceae). Aquat Bot 13: 485–504. [CrossRef] [Google Scholar]
  • Dar NA, Pandit AK, Ganai BA. 2014. Factors affecting the distribution patterns of aquatic macrophytes. Limnol Rev 14: 75–81. [Google Scholar]
  • Dawson FH, Raven PJ, Gravelle MJ. 1999. Distribution of the morphological groups of aquatic plants for rivers in the U.K. In Caffrey J, Barrett PRF, Ferreira MT, Moreira IS, Murphy KJ, Wade PM, eds. Biology, Ecology and Management of Aquatic Plants: Proceedings of the 10th International Symposium on Aquatic Weeds, European Weed Research Society. Dordrecht: Springer Netherlands, pp. 123–130. [CrossRef] [Google Scholar]
  • Dennison WC, Orth RJ, Moore KA, et al. 1993. Assessing water quality with submersed aquatic vegetation. Bioscience 43: 86–94. [CrossRef] [Google Scholar]
  • Dodkins IAN, Rippey B, Hale P. 2005. An application of canonical correspondence analysis for developing ecological quality assessment metrics for river macrophytes. Freshw Biol 50: 891–904. [CrossRef] [Google Scholar]
  • Downie AL, von Numers M, Boström C. 2013. Influence of model selection on the predicted distribution of the seagrass Zostera marina. Estuar Coast Shelf Sci 121: 8–19. [CrossRef] [Google Scholar]
  • Drexler M, Ainsworth CH. 2013. Generalized additive models used to predict species abundance in the Gulf of Mexico: an ecosystem modeling tool. PLoS ONE 8: e 64458. [CrossRef] [PubMed] [Google Scholar]
  • Dynesius M, Nilsson C. 1994. Fragmentation and flow regulation of river systems in the Northern Third of the World. Science 266: 753–762. [CrossRef] [PubMed] [Google Scholar]
  • Eiswerth ME, Donaldson SG, Johnson WS. 2000. Potential environmental impacts and economic damages of Eurasian watermilfoil (Myriophyllum spicatum) in Western Nevada and Northeastern California. Weed Technol 14: 511–518. [CrossRef] [EDP Sciences] [Google Scholar]
  • Elith J, Graham CH, Anderson RP, et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129–151. [CrossRef] [EDP Sciences] [Google Scholar]
  • Fielding AH, Bell JF. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24: 38–49. [CrossRef] [Google Scholar]
  • Franklin P, Dunbar M, Whitehead P. 2008. Flow controls on lowland river macrophytes: a review. Sci Total Environ 400: 369–378. [CrossRef] [PubMed] [Google Scholar]
  • Freeman EA, Moisen GG. 2008. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol Model 217: 48–58. [CrossRef] [Google Scholar]
  • Gallego I, Pérez-Martínez C, Sánchez-Castillo PM, Fuentes-Rodríguez F, Juan M, Casas JJ. 2015. Physical, chemical, and management-related drivers of submerged macrophyte occurrence in Mediterranean farm ponds. Hydrobiologia 762: 209–222. [CrossRef] [Google Scholar]
  • Gassmann A, Cock MJW, Shaw R, Evans HC. 2006. The potential for biological control of invasive alien aquatic weeds in Europe: a review. Hydrobiologia 570: 217–222. [CrossRef] [Google Scholar]
  • Gastón A, García-Viñas JI. 2013. Evaluating the predictive performance of stacked species distribution models applied to plant species selection in ecological restoration. Ecol Model 263: 103–108. [CrossRef] [Google Scholar]
  • Guisan A, Edwards Jr TC, Hastie T. 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157: 89–100. [CrossRef] [Google Scholar]
  • Heegaard E, Birks HH, Gibson CE, Smith SJ, Wolfe-Murphy S. 2001. Species-environmental relationships of aquatic macrophytes in Northern Ireland. Aquat Bot 70: 175–223. [CrossRef] [Google Scholar]
  • Järvelä J. 2005. Effect of submerged flexible vegetation on flow structure and resistance. J Hydrol 307: 233–241. [CrossRef] [Google Scholar]
  • Jiménez-Valverde A, Lobo JM. 2007. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol 31: 361–369. [CrossRef] [Google Scholar]
  • Jones RC, Walti K, Adams MS. 1983. Phytoplankton as a factor in the decline of the submersed macrophyte Myriophyllum spicatum L. in Lake Wingra, Wisconsin, USA. Hydrobiologia 107: 213–219. [CrossRef] [Google Scholar]
  • Jun KS, Kim JS. 2011. The four major rivers restoration project: impacts on river flows. KSCE J Civ Eng 15: 217–224. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kennedy TL, Horth LA, Carr DE. 2009. The effects of nitrate loading on the invasive macrophyte Hydrilla verticillata and two common, native macrophytes in Florida. Aquat Bot 91: 253–256. [CrossRef] [Google Scholar]
  • Kenneth AL. 1996. Hydrilla verticillata (L.F.) Royle (Hydrocharitaceae), “The Perfect Aquatic Weed”. Castanea 61: 293–304. [Google Scholar]
  • Kiffney PM, Greene CM, Hall J, Davies J. 2006. Tributary streams create spatial discontinuities in habitat, biological productivity, and diversity in mainstem rivers. Can J Fish Aquat Sci 63: 2518–2530. [CrossRef] [Google Scholar]
  • Klippel S, Amaral S, Vinhas L. 2016. Development and evaluation of species distribution models for five endangered elasmobranchs in southwestern Atlantic. Hydrobiologia 779: 11–33. [CrossRef] [Google Scholar]
  • Kuhn M, Johnson K. 2013. Applied predictive modeling. New York: Springer. [CrossRef] [Google Scholar]
  • Lacoul P, Freedman B. 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14: 89–136. [CrossRef] [Google Scholar]
  • Lah T, Park Y, Cho YJ. 2015. The four major rivers restoration project of South Korea: an assessment of its process, program, and political dimensions. J Environ Dev 24: 375–394. [CrossRef] [Google Scholar]
  • Landis JR, Koch GG. 1977. The measurement of observer agreement for categorical data. Biometrics 33 159–174. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Lathrop RG, Styles RM, Seitzinger SP, Bognar JA. 2001. Use of GIS mapping and modeling approaches to examine the spatial distribution of seagrasses in Barnegat Bay, New Jersey. Estuaries 24: 904–916. [CrossRef] [Google Scholar]
  • Lauridsen TL, Jeppesen E, Declerck SAJ, et al. 2015. The importance of environmental variables for submerged macrophyte community assemblage and coverage in shallow lakes: differences between northern and southern Europe. Hydrobiologia 744: 49–61. [CrossRef] [Google Scholar]
  • Lee JW, Bae SI, Lee DR, Seo DI. 2014. Transportation modeling of conservative pollutant in a river with weirs − the Nakdong River case. J Korean Soc Environ Eng 36: 821–827. [CrossRef] [Google Scholar]
  • Lehmann A. 1998. GIS modeling of submerged macrophyte distribution using Generalized Additive Models. Plant Ecol 139: 113–124. [CrossRef] [Google Scholar]
  • Li X, Wang Y. 2013. Applying various algorithms for species distribution modelling. Integr Zool 8: 124–135. [CrossRef] [PubMed] [Google Scholar]
  • Liu C, White M, Newell G. 2009. Measuring the accuracy of species distribution models: a review. In: Proceedings 18th World IMACs/MODSIM Congress , Cairns, Australia, pp. 4241–4247. [Google Scholar]
  • Murase H, Nagashima H, Yonezaki S, Matsukura R, Kitakado T. 2009. Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in Sendai Bay, Japan. ICES J Mar Sci 66: 1417–1424. [CrossRef] [Google Scholar]
  • Narumalani S, Jensen JR, Burkhalter S, Althausen JD, Mackey Jr HE. 1997. Aquatic macrophyte modeling using GIS and logistic multiple regression. Photogramm Eng Remote Sens 63: 41–49. [Google Scholar]
  • Nepf H, Ghisalberti M, White B, Murphy E. 2007. Retention time and dispersion associated with submerged aquatic canopies. Water Resour Res 43: W04422. [CrossRef] [Google Scholar]
  • Netherland MD. 1997. Turion ecology of hydrilla. J Aquat Plant Manage 35: 1–10. [Google Scholar]
  • Nichols SA, Shaw BH. 1986. Ecological life histories of the three aquatic nuisance plants, Myriophyllum spicatum, Potamogeton crispus and Elodea canadensis. Hydrobiologia 131: 3–21. [CrossRef] [Google Scholar]
  • Nieder WC, Barnaba E, Findlay SEG, Hoskins S, Holochuck N, Blair EA. 2004. Distribution and abundance of submerged aquatic vegetation and Trapa natans in the Hudson River Estuary. J Coast Res 150–161. [CrossRef] [Google Scholar]
  • Normile D. 2010. Restoration or devastation? Science 327: 1568–1570. [CrossRef] [PubMed] [Google Scholar]
  • O'Hare JM, O'Hare MT, Gurnell AM, Dunbar MJ, Scarlett PM, Laizé C. 2011. Physical constraints on the distribution of macrophytes linked with flow and sediment dynamics in British rivers. River Res Appl 27: 671–683. [CrossRef] [EDP Sciences] [Google Scholar]
  • Park HK, Cho KH, Won DH, Lee J, Kong DS, Jung DI. 2013. Ecosystem responses to climate change in a large on-river reservoir, Lake Paldang, Korea. Clim Change 120: 477–489. [CrossRef] [Google Scholar]
  • Patrick CJ, Weller DE, Li X, Ryder M. 2014. Effects of shoreline alteration and other stressors on submerged aquatic vegetation in subestuaries of Chesapeake Bay and the Mid-Atlantic Coastal Bays. Estuar Coast 37: 1516–1531. [CrossRef] [Google Scholar]
  • Pearce J, Ferrier S. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133: 225–245. [CrossRef] [Google Scholar]
  • Peters J, Baets BD, Verhoest NEC, Samson R, Degroeve S, Becker PD, Huybrechts W. 2007. Random forests as a tool for ecohydrological distribution modelling. Ecol Model 207: 304–318. [CrossRef] [Google Scholar]
  • QGIS Development Team. 2016. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://www.qgis.org/. [Google Scholar]
  • R Development Core Team . 2016. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.r-project.org/. [Google Scholar]
  • Rice SP, Ferguson RI, Hoey TB. 2006. Tributary control of physical heterogeneity and biological diversity at river confluences. Can J Fish Aquat Sci 63: 2553–2566. [CrossRef] [Google Scholar]
  • Riis T, Biggs BJF. 2003. Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnol Oceanogr 48: 1488–1497. [CrossRef] [Google Scholar]
  • Riis T, Sand-Jensen K, Larsen SE. 2001. Plant distribution and abundance in relation to physical conditions and location within Danish stream systems. Hydrobiologia 448: 217–228. [CrossRef] [Google Scholar]
  • Rybicki NB, Landwehr JM. 2007. Long-term changes in abundance and diversity of macrophyte and waterfowl populations in an estuary with exotic macrophytes and improving water quality. Limnol Oceanogr 52: 1195–1207. [CrossRef] [Google Scholar]
  • Sanchez P, Demestre M, Recasens L, Maynou F, Martin P. 2008. Combining GIS and GAMs to identify potential habitats of squid Loligo vulgaris in the Northwestern Mediterranean. Hydrobiologia 612: 91–98. [CrossRef] [Google Scholar]
  • Segurado P, Araujo MB. 2004. An evaluation of methods for modelling species distributions. J Biogeogr 31: 1555–1568. [CrossRef] [Google Scholar]
  • Shin JH, Chung JY. 2011. The four major rivers restoration project in South Korea. Proc Inst Civ Eng Civ Eng 164: 19–26. [Google Scholar]
  • Shmueli G. 2010. To explain or to predict? Stat Sci 289–310. [CrossRef] [Google Scholar]
  • Sing T, Sander O, Beerenwinkel N, Lengauer T. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21: 3940–3941. [CrossRef] [PubMed] [Google Scholar]
  • Solanki HU, Bhatpuria D, Chauhan P. 2016. Applications of generalized additive model (GAM) to satellite-derived variables and fishery data for prediction of fishery resources distributions in the Arabian Sea. Geocarto Int 32: 30–43. [CrossRef] [Google Scholar]
  • Sousa W. 2011. Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil's freshwater environments: a review of the extent of the problem. Hydrobiologia 669: 1–20. [CrossRef] [Google Scholar]
  • Sousa WTZ, Thomaz SM, Murphy KJ, Silveira MJ, Mormul RP. 2009. Environmental predictors of the occurrence of exotic Hydrilla verticillata (L.f.) Royle and native Egeria najas Planch. in a sub-tropical river floodplain: the Upper River Paraná, Brazil. Hydrobiologia 632: 65–78. [CrossRef] [Google Scholar]
  • Strand JA, Weisner SEB. 1996. Wave exposure related growth of epiphyton: implications for the distribution of submerged macrophytes in eutrophic lakes. Hydrobiologia 325: 113–119. [CrossRef] [Google Scholar]
  • Swets J. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293. [CrossRef] [PubMed] [Google Scholar]
  • Thomaz SM, Souza DC, Bini LM. 2003. Species richness and beta diversity of aquatic macrophytes in a large subtropical reservoir (Itaipu Reservoir, Brazil): the influence of limnology and morphometry. Hydrobiologia 505: 119–128. [CrossRef] [Google Scholar]
  • Thuiller W, Richardson DM, PyŠEk P, Midgley GF, Hughes GO, Rouget M. 2005. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11: 2234–2250. [CrossRef] [Google Scholar]
  • Tian K, Liu G, Xiao D, Sun J, Lu M, Huang Y, Lin P. 2015. Ecological effects of dam impoundment on closed and half-closed wetlands in China. Wetlands 35: 889–898. [CrossRef] [Google Scholar]
  • Van TK, Wheeler GS, Center TD. 1999. Competition between Hydrilla verticillata and Vallisneria americana as influenced by soil fertility. Aquat Bot 62: 225–233. [CrossRef] [Google Scholar]
  • VanDerWal J, Falconi L, Januchowski S, Shoo L, Storlie C. 2014. SDMTools: Species Distribution Modelling tools: tools for processing data associated with species distribution modelling exercises. R package version, 1.1-221. [Google Scholar]
  • Wedding L, Yoklavich MM. 2015. Habitat-based predictive mapping of rockfish density and biomass off the central California coast. Mar Ecol Prog Ser 540: 235–250. [CrossRef] [Google Scholar]
  • Woo H. 2010. Trends in ecological river engineering in Korea. J Hydroenviron Res 4: 269–278. [Google Scholar]
  • Wood SN. 2000. Modelling and smoothing parameter estimation with multiple quadratic penalties. J R Stat Soc Ser B (Stat Method) 62: 413–428. [CrossRef] [Google Scholar]
  • Wood SN. 2006. Generalized additive models: an introduction with R. Boca Raton: CRC Press. [Google Scholar]
  • Xie D, Yu D, You WH, Wang LG. 2013. Morphological and physiological responses to sediment nutrients in the submerged macrophyte Myriophyllum spicatum. Wetlands 33: 1095–1102. [CrossRef] [Google Scholar]
  • Yee TW, Mitchell ND. 1991. Generalized additive models in plant ecology. J Veg Sci 2: 587–602. [CrossRef] [Google Scholar]
  • Yu H, Ye C, Song X, Liu J. 2010. Comparative analysis of growth and physio-biochemical responses of Hydrilla verticillata to different sediments in freshwater microcosms. Ecol Eng 36: 1285–1289. [CrossRef] [Google Scholar]
  • Zhao J, Cao J, Tian S, Chen Y, Zhang S, Wang Z, Zhou X. 2014. A comparison between two GAM models in quantifying relationships of environmental variables with fish richness and diversity indices. Aquat Ecol 48: 297–312. [CrossRef] [Google Scholar]
  • Zhou N, Hu W, Deng J, Zhu J, Xu W, Liu X. 2016. The effects of water depth on the growth and reproduction of Potamogeton crispus in an in situ experiment. J Plant Ecol 10: 546–558. [Google Scholar]
  • Zimmermann NE, Edwards TC, Moisen GG, Frescino TS, Blackard JA. 2007. Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. J Appl Ecol 44: 1057–1067. [CrossRef] [PubMed] [Google Scholar]
  • Zuur AF, Pierce GJ. 2004. Common trends in northeast Atlantic squid time series. J Sea Res 52: 57–72. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.