Issue
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Topical Issue on Fish Ecology
Article Number 33
Number of page(s) 14
DOI https://doi.org/10.1051/kmae/2017026
Published online 18 August 2017
  • Abrantes KG, Lyle JM, Nichols PD, Semmens JM. 2011. Do exotic salmonids feed on native fauna after escaping from aquaculture cages in Tasmania, Australia? Can J Fish Aquat Sci 68: 1539–1551. [CrossRef] [Google Scholar]
  • Ahlbeck I, Hansson S, Hjerne O. 2012. Evaluating fish diet analysis methods by individual-based modeling. Can J Fish Aquat Sci 69: 1184–1201. [CrossRef] [Google Scholar]
  • Aigo J. 2010. Interacción entre peces nativos y salmónidos en Patagonia: su vulnerabilidad al cambio climático, Doctoral thesis. Argentina: Universidad Nacional del Comahue. [Google Scholar]
  • Aigo J, Cussac V, Peris S, et al. 2008. Distribution of introduced and native fish in Patagonia (Argentina): patterns and changes in fish assemblages. Rev Fish Biol Fish 18: 387–408. [CrossRef] [Google Scholar]
  • Alonso C, Rocco V, Barriga JP, Battini MA, Zagarese H. 2004. Surface avoidance by freshwater zooplankton: field evidence on the role of ultraviolet radiation. Limnol Oceanogr 49: 225–232. [CrossRef] [Google Scholar]
  • Arcagni M, Rizzo A, Campbell LM, et al. 2015. Stable isotope analysis of trophic structure, energy flow and spatial variability in a large ultraoligotrophic lake in Northwest Patagonia. J Great Lakes Res 41: 916–925. [CrossRef] [Google Scholar]
  • Arismendi I, Soto D, Penaluna B, Jara C, Leal C, León-Muñoz J. 2009. Aquaculture, non-native salmonid invasions and associated declines of native fishes in Northern Patagonian lakes. Freshw Biol 54: 1135–1147. [CrossRef] [Google Scholar]
  • Balseiro E, Modenutti B, Queimaliños C, Reissig M. 2007. Daphnia distribution in Andean Patagonian lakes: effect of low food quality and fish predation. Aquat Ecol 41: 599–609. [CrossRef] [EDP Sciences] [Google Scholar]
  • Barriga JP, Battini MA, Macchi PJ, Milano D, Cussac VE. 2002. Spatial and temporal distribution of landlocked Galaxias maculatus and Galaxias platei (Pisces: Galaxiidae) in a lake in the South American Andes. New Zeal J Mar Fresh Res 36: 349–363. [CrossRef] [Google Scholar]
  • Barriga JP, Battini MA, Cussac VE. 2007. Annual dynamics variation of landlocked Galaxias maculatus (Jenyns 1842) population in a northern Patagonian river: occurrence of juvenile upstream migration. J Appl Ichthyol 23: 128–135. [CrossRef] [Google Scholar]
  • Bourret V, O’Reilly PT, Carr JW, Berg PR, Bernatchez L. 2011. Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon (Salmo salar) population following introgression by farmed escapees. Heredity 106: 500–510. [CrossRef] [PubMed] [Google Scholar]
  • Bridger CJ, Booth RK, McKinley RS, Scruton DA. 2001. Site fidelity and dispersal patterns of domestic triploid steelhead trout (Oncorhynchus mykiss Walbaum) released to the wild. ICES J Mar Sci 58: 510–516. [CrossRef] [Google Scholar]
  • Bristow CE, Morin A, Hesslein RH, Podemski CL. 2008. Phosphorus budget and productivity of an experimental lake during the initial three years of cage aquaculture. Can J Fish Aquat Sci 65: 2485–2495. [CrossRef] [Google Scholar]
  • Brown C, Markula A, Laland K. 2003. Social learning of prey location in hatchery-reared Atlantic salmon. J Fish Biol 63: 738–745. [CrossRef] [Google Scholar]
  • Bureau DP, Hua K. 2010. Towards effective nutritional management of waste outputs in aquaculture, with particular reference to salmonid aquaculture operations. Aquacult Res 41: 777–792. [CrossRef] [Google Scholar]
  • Buria L, Walde SJ, Battini M, et al. 2007. Movement of a South American perch Percichthys trucha in a mountain Patagonian lake during spawning and prespawning periods. J Fish Biol 70: 215–30. [CrossRef] [Google Scholar]
  • Chittenden C, Rikardsen A, Skilbrei O, et al. 2011. An effective method for the recapture of escaped farmed salmon. Aquacult Environ Interact 1: 215–224. [CrossRef] [Google Scholar]
  • Consuegra S, Phillips N, Gajardo G, García de Leaniz C. 2011. Winning the invasion roulette: escapes from fish farms increase admixture and facilitate establishment of non-native rainbow trout. Evol Appl 4: 660–71. [CrossRef] [PubMed] [Google Scholar]
  • Crichigno SA, Battini MA, Cussac VE. 2012. Early morphological variation and induction of phenotypic plasticity in Patagonian pejerrey. Neotrop Ichthyol 10: 341–348. [CrossRef] [Google Scholar]
  • Cussac VE, Ruzzante D, Walde S, et al. 1998. Body shape variation of three species of Percichthys in relation to their coexistence in the Limay River, in northern Patagonia. Environ Biol Fish 53: 143–153. [CrossRef] [Google Scholar]
  • Cussac VE, Becker LA, Aigo J, et al. 2014. Abundance of native fishes, wild-introduced salmonids and escaped farmed rainbow trout in a Patagonian reservoir. Lake Reserv Manag 19: 74–85. [CrossRef] [Google Scholar]
  • dos Santos RM, Rocha GS, Rocha O, Santos Wisniewski MJ. 2009. Influence of net cage fish cultures on the diversity of the zooplankton community in the Furnas hydroelectric reservoir, Areado, MG, Brazil. Aquac Res 40: 753–761. [CrossRef] [Google Scholar]
  • Eloranta AP, Sánchez-Hernández J, Amundsen PA, et al. 2016. Water level regulation affects niche use of a lake top predator, Arctic charr (Salvelinus alpinus). Ecohydrology 10: 1–9. [Google Scholar]
  • Elser JT, Luecke C, Brett MT, Goldman CR. 1995. Effects of food web compensation after manipulation of rainbow trout in an oligotrophic lake. Ecology 76: 52–69. [CrossRef] [Google Scholar]
  • Ferriz RA. 1988. Relaciones tróficas de Trucha Marrón, Salmo fario Linné, y Trucha Arco Iris, Salmo gairdneri Richardson (Osteichthyes, Salmoniformes) en un embalse norpatagónico. Stud Neotrop Fauna E 23: 123–131. [CrossRef] [Google Scholar]
  • Findlay DL, Podemski CL, Kasian SEM. 2009. Aquaculture impacts on the algal and bacterial communities in a small boreal forest. Can J Fish Aquat Sci 66: 1936–1948. [CrossRef] [Google Scholar]
  • Fiske P, Lund RA, Hansen LP. 2005. Identifying fish farm escapees. In: Cadrin SX, Friedland KD, Waldman JD, eds. Stock identification methods. Amsterdam: Elsevier Academic Press, pp. 659–680. [CrossRef] [Google Scholar]
  • Fox J. 2003. Effect displays in R for generalised linear models. J Stat Softw 8: 1–27. [EDP Sciences] [Google Scholar]
  • Fox J, Weisberg S. 2011. An R companion to applied regression, 2nd ed. Thousand Oaks: Sage, 449 p. [Google Scholar]
  • Gaitán JJ, Ayesa JA, Umaña F, Raffo F, Bran DB. 2011. Cartografía del área afectada por la ceniza del volcán puyehue en Río Negro y Neuquén. In: XIX Congreso Latinoamericano de la ciencia del suelo, XXIII Congreso Aregntino de la ciencia del suelo. [Google Scholar]
  • Galbraith MG Jr. 1967. Size-selective predation on Daphnia by rainbow trout and yellow perch. Trans Am Fish Soc 96: 1–10. [CrossRef] [Google Scholar]
  • Green DM, Penman DJ, Migaud H, Bron JE, Taggart JB, McAndrew BJ. 2012. The impact of escaped farmed Atlantic Salmon (Salmo salar L.) on catch statistics in Scotland. PLoS ONE 7: 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Guo L, Li Z. 2003. Effects of nitrogen and phosphorus from fish cage-culture on the communities of a shallow lake in middle Yangtze River basin of China. Aquaculture 226: 201–212. [CrossRef] [Google Scholar]
  • Habit E, Piedra P, Ruzzante DE, et al. 2010. Changes in the distribution of native fishes in response to introduced species and other anthropogenic effects. Global Ecol Biogeogr 19: 697–710. [Google Scholar]
  • Hanisch JR, Tonn WM, Paszkowski CA, Scrimgeour GJ. 2012. Complex littoral habitat influences the response of native minnows to stocked trout: evidence from whole-lake comparisons and experimental predator enclosures. Can J Fish Aquat Sci 69: 273–281. [CrossRef] [Google Scholar]
  • Hindar K, Fleming IA. 2007. Behavioral and genetic interactions between escaped farm salmon and wild Atlantic salmon. In: Bert TM, ed. Ecological and genetic implications of aquaculture activities. Berlin: Springer, pp. 115–122. [CrossRef] [Google Scholar]
  • Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. Biom J 50: 346–363. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Hoyle I, Oidtmann B, Ellis T, et al. 2007. A validated macroscopic key to assess fin damage in farmed rainbow trout (Oncorhynchus mykiss). Aquaculture 270: 142–148. [CrossRef] [Google Scholar]
  • Hyslop EJ. 1980. Stomach content analysis – a review of methods and their application. J Fish Biol 17: 411–429. [CrossRef] [Google Scholar]
  • Johnston TA, Wilson CC. 2014. Comparative ecologies of domestic and naturalised rainbow trout in northern Lake Huron. Ecol Freshw Fish 24: 338–354. [CrossRef] [Google Scholar]
  • Johnston TA, Keir M, Power M. 2010. Response of native and naturalized fish to salmonid cage culture farms in northern Lake Huron, Canada. Trans Am Fish Soc 139: 660–670. [CrossRef] [Google Scholar]
  • Jonsson B, Jonsson N. 2006. Cultured Atlantic salmon in nature: a review of their ecology and interaction with wild fish. ICES J Mar Sci 63: 1162–1181. [CrossRef] [Google Scholar]
  • Juncos R, Milano D, Macchi PJ, Vigliano PH. 2014. Niche segregation facilitates coexistence between native and introduced fishes in a deep Patagonian lake. Hydrobiologia 743: 53–67. [Google Scholar]
  • Latremouille DN. 2003. Fin erosion in aquaculture and natural environments. Rev Fish Sci 11: 315–335. [CrossRef] [Google Scholar]
  • Levins R. 1968. Evolution in changing environments. Princeton, NJ, USA: Princeton University Press. [Google Scholar]
  • López-Albarello A. 2004. Taxonomy of the genus Percichthys (Perciformes: Percichthyidae). Ichthyol Explor Freshw 15: 331–350. [Google Scholar]
  • Macchi PJ, Cussac VE, Alonso MF, Denegri MA. 1999. Predation relationships between introduced salmonids and the native fish fauna in lakes and reservoirs in Northern Patagonia. Ecol Freshw Fish 8: 227–236. [CrossRef] [Google Scholar]
  • Macchi PJ, Pascual MA, Vigliano PH. 2007. Differential piscivory of the native Percichthys trucha and exotic salmonids upon the native forage fish Galaxias maculatus in Patagonian Andean lakes. Limnologica 37: 76–87. [CrossRef] [Google Scholar]
  • Maceda-Veiga A, Green AJ, De Sostoa A. 2014. Scaled body-mass index shows how habitat quality influences the condition of four fish taxa in north-eastern Spain and provides a novel indicator of ecosystem health. Freshw Biol 59: 1145–1160. [CrossRef] [Google Scholar]
  • Marshall S, Elliott M. 1997. A comparison of univariate and multivariate numerical and graphical techniques for determining inter- and intraspecific feeding relationships in estuarine fish. J Fish Biol 51: 526–545. [CrossRef] [Google Scholar]
  • McGinnity P, Prodöhl P, Ferguson A, et al. 2003. Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc Biol Sci 270: 2443–2450. [CrossRef] [PubMed] [Google Scholar]
  • Monroy M, Maceda-Veiga A, Caiola N, De Sostoa A. 2014. Trophic interactions between native and introduced fish species in a littoral fish community. J Fish Biol 85: 1693–1706. [CrossRef] [PubMed] [Google Scholar]
  • Muñoz-Ramírez CP, Unmack PJ, Habit E, Johnson JB, Cussac VE, Victoriano P. 2014. Phylogeography of the ancient catfish family Diplomystidae: biogeographic, systematic, and conservation implications. Mol Phylogenet Evol 73: 146–160. [CrossRef] [PubMed] [Google Scholar]
  • Naylor R, Hindar K, Fleming IA, et al. 2005. Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. BioScience 55: 427–237. [CrossRef] [Google Scholar]
  • Negus MT, Hoffman JC. 2013. Habitat and diet differentiation by two strains of rainbow trout in Lake Superior based on archival tags, stable isotopes, and bioenergetics. J Great Lakes Res 39: 578–590. [CrossRef] [Google Scholar]
  • Norusis MJ. 1986. SPSS/PC+ advanced statistics. Chicago, IL: SPSS Inc. [Google Scholar]
  • Olaussen JO, Liu Y. 2011. On the willingness-to-pay for recreational fishing escaped farmed versus wild atlantic salmon. Aquacult Econ Manag 15: 245–261. [CrossRef] [Google Scholar]
  • Otturi MG, Battini MA, Barriga JP. 2016. The effects of invasive rainbow trout on habitat use and diel locomotor activity in the South American Creole perch: an experimental approach. Hydrobiologia 777: 243–254. [CrossRef] [Google Scholar]
  • Pascual MA, Cussac V, Dyer B, et al. 2007. Freshwater fishes of Patagonia in the 21st century after a hundred years of human settlement, species introductions, and environmental change. Aquat Ecosyst Health Manag 10: 212–227. [CrossRef] [Google Scholar]
  • Pascual MA, Lancelotti JL, Ernst B, Ciancio JE, Aedo E, García-Asorey M. 2009. Scale, connectivity, and incentives in the introduction and management of non-native species: the case of exotic salmonids in Patagonia. Front Ecol Environ 7: 533–540. [CrossRef] [Google Scholar]
  • Paterson MJ, Podemski CL, Findlay WJ, Findlay DL, Salki AG. 2010. The response of zooplankton in a whole-lake experiment on the effects of a cage aquaculture operation for rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 67: 1852–1861. [CrossRef] [Google Scholar]
  • Patterson K, Blanchfield P. 2013. Oncorhynchus mykiss escaped from commercial freshwater aquaculture pens in Lake Huron, Canada. Aquacult Environ Interact 4: 53–65. [CrossRef] [Google Scholar]
  • Peig J, Green AJ. 2009. New perspectives for estimating body condition from mass/length data: the Scaled Mass Index as an alternative method. Oikos 118: 1883–1891. [CrossRef] [Google Scholar]
  • Podemski CL, Blanchfield PJ. 2006. Overview of the environmental impacts of Canadian freshwater aquaculture. In: Paradis S, Smith D, Chevrier A, eds. A scientific review of the potential environmental effects of aquaculture in aquatic ecosystems. Ottawa: Fisheries and Oceans Canada, pp. 30–79. [Google Scholar]
  • Quirós R. 1990. Predictors of relative fish biomass in lakes and reservoirs of Argentina. Can J Fish Aquat Sci 47: 928–939. [CrossRef] [Google Scholar]
  • R Core Team. 2015. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [Google Scholar]
  • Reid GK, McMillan I, Moccia RD. 2006. Near-field loading dynamics of total phosphorus and short-term water quality variations at a rainbow trout cage farm in Lake Huron. J Environ Monit 8: 947–54. [CrossRef] [PubMed] [Google Scholar]
  • Reissig M, Modenutti B, Balseiro E, Queimaliños C. 2004. The role of the predaceous copepod Parabroteas sarsi in the pelagic food web of a large deep Andean lake. Hydrobiologia 524: 67–77. [CrossRef] [Google Scholar]
  • Rikardsen AH, Sandring S. 2006. Diet and size-selective feeding by escaped hatchery rainbow trout Oncorhynchus mykiss (Walbaum). ICES J Mar Sci 63: 460–465. [CrossRef] [Google Scholar]
  • Ruzzante DE, Walde SJ, Cussac VE, et al. 2006. Phylogeography of the Percichthyidae (Pisces) in Patagonia: roles of orogeny, glaciation, and volcanism. Mol Ecol 15: 2949–2968. [CrossRef] [PubMed] [Google Scholar]
  • Ruzzante DE, Walde SJ, Macchi PJ, Alonso M, Barriga JP. 2011. Phylogeography and phenotypic diversification in the Patagonian fish Percichthys trucha: the roles of Quaternary glacial cycles and natural selection. Biol J Linn Soc 103: 514–529. [CrossRef] [Google Scholar]
  • Skaala Ø, Wennevik V, Glover KA. 2006. Evidence of temporal genetic change in wild Atlantic salmon, Salmo salar L., populations affected by farm escapees. ICES J Mar Sci 63: 1224–1233. [CrossRef] [Google Scholar]
  • Skilbrei OT. 2010. Adult recaptures of farmed Atlantic salmon post-smolts allowed to escape during summer. Aquacult Environ Interact 1: 147–153. [CrossRef] [Google Scholar]
  • Skilbrei OT. 2012. The importance of escaped farmed rainbow trout (Oncorhynchus mykiss) as a vector for the salmon louse (Lepeophtheirus salmonis) depends on the hydrological conditions in the fjord. Hydrobiologia 686: 287–297. [CrossRef] [Google Scholar]
  • Soto D, Jara F, Moreno C. 2001. Escaped salmon in the inner seas, southern Chile: facing ecological and social conflicts. Ecol Appl 11: 1750–1762. [CrossRef] [Google Scholar]
  • Sterner RW, Schulz KL. 1998. Zooplankton nutrition: recent progress and a reality check. Aquat Ecol 32: 261–279. [CrossRef] [Google Scholar]
  • Swain DP, Riddell BE, Murray CB. 1991. Morphological differences between hatchery and wild populations of coho salmon (Oncorhynchus kisutch): environmental versus genetic origin. Can J Fish Aquat Sci 48: 1783–1791. [CrossRef] [Google Scholar]
  • Temporetti PF, Alonso MF, Baffico G, et al. 2001. Trophic state, fish community and intensive production of salmonids in Alicurá Reservoir (Patagonia, Argentina). Lake Reserv Manage 6: 259–267. [CrossRef] [Google Scholar]
  • Valdovinos C, Moya C, Olmos V, Parra O, Karrasch B, Buettner O. 2007. The importance of water-level fluctuation for the conservation of shallow water benthic macroinvertebrates: an example in the Andean zone of Chile. Biodivers Conserv 16: 3095–3109. [CrossRef] [Google Scholar]
  • Vigliano PH, Alonso MF, Aquaculture M. 2007. Salmonid introductions in Patagonia: a mixed blessing. In: Bert TM, ed. Ecological and genetic implications of aquaculture activities. Berlin: Springer, pp. 315–331. [CrossRef] [Google Scholar]
  • Vigliano PH, Macchi PJ, Alonso M, Denegri MA, García Asorey M, Lippolt G. 2008. Gill net and hydroacoustic fish resource evaluation of an ultraoligotrophic lake of northern Patagonia Argentina. Am Fish Soc Symp 49: 1725–1747. [Google Scholar]
  • Wallace RK Jr. 1981. An assessment of diet-overlap indexes. Trans Am Fish Soc 110: 37–41. [Google Scholar]
  • Warton DI, Hui FKC. 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92: 3–10. [CrossRef] [PubMed] [Google Scholar]
  • Webster MM, Ward AJW, Hart PJB. 2008. Shoal and prey patch choice by co-occurring fishes and prawns: inter-taxa use of socially transmitted cues. Proc R Soc B 275: 203–208. [CrossRef] [Google Scholar]
  • Wickham H. 2009. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag. [Google Scholar]
  • Zeller N, Avila CD, Núnez P. 2009. Acuicultura. Documento sectorial integral. Provincia del Neuquén, Argentina: Ministerio de Desarrollo Territorial. [Google Scholar]
  • Zohary T, Ostrovsky I. 2011. Ecological impacts of excessive water level fluctuations in stratified lakes. Inland Waters 1: 47–59. [CrossRef] [Google Scholar]
  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith G. 2009. Mixed effects models and extensions in ecology with R. New York: Springer. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.