Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 5
Number of page(s) 14
Published online 03 February 2017
  • Bowler D, Mant R, Orr H, Hannah D, Pullin A. 2012. What are the effects of wooded riparian zones on stream temperature? Environ Evid 1: 3. [CrossRef] [Google Scholar]
  • Boyd M, Kasper B. 2003. Analytical Methods for Dynamic Open Channel Heat and Mass Transfer: Methodology for the Heat Source Model Version 7.0. [Google Scholar]
  • Broadmeadow S, Nisbet TR. 2004. The effects of riparian forest management on the freshwater environment: a literature review of best management practice. Hydrol Earth Syst Sci 8: 286–305. [CrossRef] [Google Scholar]
  • Broadmeadow SB, Jones JG, Langford TEL, Shaw PJ, Nisbet TR. 2011. The influence of riparian shade on lowland stream water temperatures in southern England and their viability for brown trout. River Res Appl 27: 226–237. [CrossRef] [Google Scholar]
  • Caissie D. 2006. The thermal regime of rivers: a review. Freshw Biol 51: 1389–1406. [CrossRef] [PubMed] [Google Scholar]
  • Cejka A, Dvorak M, Fortman I, et al. 2005. Das Lafnitztal – Flusslandschaft im Herzen Europas. Wien: Neuer Wissenschaftlicher Verlag, p. 233. [Google Scholar]
  • Correll DL. 2005. Principles of planning and establishment of buffer zones. Ecol Eng 24: 433–439. [CrossRef] [Google Scholar]
  • Davies-Colley RJ, Meleason MA, Hall RMJ, Rutherford JC. 2009. Modelling the time course of shade, temperature, and wood recovery in streams with riparian forest restoration. N Z J Mar Freshw Res 43: 673–688. [CrossRef] [Google Scholar]
  • DeWalle DR. 2008. Guidelines for riparian vegetative shade restoration based upon a theoretical shaded-stream model. J Am Water Resour Assoc 44: 1373–1387. [CrossRef] [Google Scholar]
  • DeWalle DR. 2010. Modeling stream shade: riparian buffer height and density as important as buffer width. J Am Water Resour Assoc 46: 323–333. [CrossRef] [Google Scholar]
  • Evans EC, McGregor GR, Petts GE. 1998. River energy budgets with special reference to river bed processes. Hydrolog Process 12: 575–595. [CrossRef] [Google Scholar]
  • Fink M, Moog O, Wimmer R. 2000. Fließgewässer – Naturräume Österreichs. Wien: Umweltbundesamt. [Google Scholar]
  • Garner G, Malcolm IA, Sadler JP, Hannah DM. 2014. What causes cooling water temperature gradients in a forested stream reach? Hydrol Earth Syst Sci 18: 5361–5376. [CrossRef] [Google Scholar]
  • Ghermandi A, Vandenberghe V, Benedetti L, Bauwens W, Vanrolleghem PA. 2009. Model-based assessment of shading effect by riparian vegetation on river water quality. Ecol Eng 35: 92–104. [CrossRef] [Google Scholar]
  • Gomi T, Moore RD, Dhakal AS. 2006. Headwater stream temperature response to clear-cut harvesting with different riparian treatments, coastal British Columbia, Canada. Water Resour Res 42: W08437. [CrossRef] [Google Scholar]
  • Groom JD, Dent L, Madsen LJ, Fleuret J. 2011. Response of western Oregon (USA) stream temperatures to contemporary forest management. Forest Ecol Manag 262: 1618–1629. [CrossRef] [Google Scholar]
  • He J, Chu A, Ryan MC, Valeo C, Zaitlin B. 2011. Abiotic influences on dissolved oxygen in a riverine environment. Ecol Eng 37: 1804–1814. [CrossRef] [Google Scholar]
  • Holzapfel G, Weihs P, Rauch HP. 2013. Use of the Shade-a-lator 6.2 model to assess the shading potential of riparian purple willow (Salix purpurea) coppices on small to medium sized rivers. Ecol Eng 61: 697–705. [CrossRef] [Google Scholar]
  • Johnson MF, Wilby RL. 2015. Seeing the landscape for the trees: metrics to guide riparian shade management in river catchments. Water Resour Res 51: 3754–3769. [CrossRef] [Google Scholar]
  • Johnson SL. 2004. Factors influencing stream temperatures in small streams: substrate effects and a shading experiment. Can J Fish Aquat Sci 61: 913–923. [CrossRef] [Google Scholar]
  • Kasper B, Boyd M. 2002. TTools 7.0 User Manual. Portland: Oregon Department of Environmental Quality. [Google Scholar]
  • Kovats RS, Valentini R, Bouwer LM, et al. 2014. Europe. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA: Cambridge University Press, pp. 1267–1326. [Google Scholar]
  • Kyselý J, Kalvová J, Květoň V. 2000. Heat waves in the South Moravian region during the period 1961–1995. Studia Geophys Geodaet 44: 57–72. [CrossRef] [Google Scholar]
  • Laaha G, Parajka J, Viglione A, et al. 2016. A three-pillar approach to assessing climate impacts on low flows. Hydrol Earth Syst Sci 20: 3967–3985. [CrossRef] [Google Scholar]
  • Leach JA, Moore RD. 2010. Above-stream microclimate and stream surface energy exchanges in a wildfire-disturbed riparian zone. Hydrolog Process 24: 2369–2381. [Google Scholar]
  • Logez M, Pont D. 2013. Global warming and potential shift in reference conditions: the case of functional fish-based metrics. Hydrobiologia 704: 417–436. [CrossRef] [Google Scholar]
  • Matulla C, Schmutz S, Melcher A, Gerersdorfer T, Haas P. 2007. Assessing the impact of a downscaled climate change simulation on the fish fauna in an Inner-Alpine River. Int J Biometeorol 52: 127–137. [CrossRef] [PubMed] [Google Scholar]
  • Melcher A, Kalny G, Dossi F, et al. 2016. Der Einfluss der Ufervegetation auf die Wassertemperatur unter gewässerspezifischer Berücksichtigung von Fischen und benthischen Evertebraten am Beispiel von Lafnitz und Pinka. Österreichische Wasser- und Abfallwirtschaft. [Google Scholar]
  • MeteoSchweiz, B.f.M.u.K., Definition Schönwettertage. [Google Scholar]
  • Moore RD, Spittlehouse DL, Story A. 2005. Riparian microclimate and stream temperature response to forest harvesting: a review. J Am Water Resour Assoc 41: 813–834. [CrossRef] [Google Scholar]
  • Pletterbauer F, Melcher A, Ferreira T, Schmutz S. 2014. Impact of climate change on the structure of fish assemblages in European rivers. Hydrobiologia 744: 235–254. [Google Scholar]
  • Poole GC, Berman CH. 2001. An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environ Manag 27: 787–802. [Google Scholar]
  • Quinn JM, Wright-Stow AE. 2008. Stream size influences stream temperature impacts and recovery rates after clearfell logging. Forest Ecol Manag 256: 2101–2109. [CrossRef] [Google Scholar]
  • Rahel FJ, Olden JD. 2008. Assessing the effects of climate change on aquatic invasive species. Evaluación de los Efectos del Cambio Climático sobre Especies Acuáticas Invasoras. Conserv Biol 22: 521–533. [Google Scholar]
  • Rich PM, Wood J, Vieglais DA, Burek K, Webb N. 1999. User Manual for HemiView-Version 2.1. Oregon: Delta-T Devices Ltd, p. 79. [Google Scholar]
  • Rutherford JC, Blackett S, Blackett C, Saito L, Davies‐Colley RJ. 1997. Predicting the effects of shade on water temperature in small streams. N Z J Mar Freshw Res 31: 707–721. [CrossRef] [Google Scholar]
  • Rutherford JC, Marsh NA, Davies PM, Bunn SE. 2004. Effects of patchy shade on stream water temperature: how quickly do small streams heat and cool? Mar Freshw Res 55: 737–748. [CrossRef] [Google Scholar]
  • Sridhar V, Sansone AL, LaMarche J, Dubin T, Lettenmaier DP. 2004. Prediction of stream temperature in forested watersheds. J Am Water Resour Assoc 40: 197–213. [CrossRef] [Google Scholar]
  • Story A, Moore RD, Macdonald JS. 2003. Stream temperatures in two shaded reaches below cutblocks and logging roads: downstream cooling linked to subsurface hydrology. Can J For Res 33: 1383–1396. [CrossRef] [Google Scholar]
  • Traxler A. 1997. Handbuch des Vegetationsökologischen Monitorings - Methoden, Praxis, angewandte Projekte - Teil A: Methoden. Wien: Umweltbundesamt Österreich, p. 391. [Google Scholar]
  • Trimmel H, Gangneux C, Kalny G, Weihs P. 2016. Application of the model ‘Heat Source’ to assess the influence of meteorological components on stream temperature and simulation accuracy under heat wave conditions. Meteorolog Z 25: 389–406. [CrossRef] [Google Scholar]
  • Webb BW, Nobilis F. 1997. Long-term perspective on the nature of the air-water temperature relationship: a case study. Hydrolog Process 11: 137–147. [CrossRef] [Google Scholar]
  • Webb BW, Hannah DM, Moore RD, Brown LE, Nobilis F. 2008. Recent advances in stream and river temperature research. Hydrolog Process 22: 902–918. [Google Scholar]
  • Wimmer R, Wintersberger H, Parthl N. 2012. Fließgewässertypisierung in Österreich − Hydromorphologische Leitbilder Band 2: Naturraumbeschreibungen, Bioregionen und Typologie. Vienna: Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft − Abt. VII / 1. [Google Scholar]
  • Zwieniecki MA, Newton M. 1999. Influence of streamside cover and stream features on temperature trends in forested streams of Western Oregon. Soc Am For West J Appl For 108: 106–113. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.