Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 417, 2016
Article Number 43
Number of page(s) 11
Published online 08 December 2016
  • Aldridge DC. 2000. The impacts of dredging and weed cutting on a population of freshwater mussels (Bivalvia: Unionidae). Biol Conserv 95: 247–257. [CrossRef] [Google Scholar]
  • Baryshev LA, Veselov AE. 2007. Seasonal dynamics of benthos and invertebrate drift in some tributaries on Onega Lake. Biol Inland Waters 1: 74–80. [Google Scholar]
  • Benke AC, Wallace JB, Harrison JW, Koebel JW. 2001. Food web quantification using secondary production analysis: predaceous invertebrates of the snag habitat in a subtropical river. Freshw Biol 46: 329–346. [CrossRef] [Google Scholar]
  • Bernard R, Buczyński P, Tończyk G, Wendzonka J. 2009. A distribution atlas of dragonflies (Odonata) in Poland. Poznań: Bogucki Wydawnictwo Naukowe, 256 p. [Google Scholar]
  • Borisov SN. 2009. Study of dragonfly (Odonata) migrations in the Western Tien Shan mountains using ornithological traps. Entomol Rev 89: 1025–1029. [CrossRef] [Google Scholar]
  • Braun-Blanquet J. 1964. Pflanzensociologie: Grundzüge der Vegetationskunde. 3te Aufl. Wienn: Springer-Verlag, 865 p. [Google Scholar]
  • Brittain JE, Eikeland TJ. 1988. Invertebrate drift – a review. Hydrobiologia 166: 77–93. [CrossRef] [Google Scholar]
  • Buchwald R. 1989. Die Bedeutung der Vegetation für die Habitatsbindung einiger Libellenarten der Quellmoore und Fließgewässer. Phytocoenologia 17: 307–448. [CrossRef] [Google Scholar]
  • Buchwald R. 1992. Vegetation and dragonfly fauna – characteristics and examples of biocenological field studies. Vegetatio 101: 99–107. [Google Scholar]
  • Buczyński P. 1999. Dragonflies (Odonata) of sand pits in south-eastern Poland. Acta Hydrobiol 41: 219–230. [Google Scholar]
  • Buczyński P. 2015. Dragonflies (Odonata) of anthropogenic waters in middle-eastern Poland. Olsztyn: Wydawnictwo Mantis, 272 p. [Google Scholar]
  • Buczyński P, Tończyk G. 1997. Analysis of dragonfly assemblages (Odonata) in running waters in Poland. In: Burchard L, Messyasz B, eds. XVII Zjazd Hydrobiologów Polskich. Poznań, 8-11 września 1997. Sorus, Poznań: Materiały zjazdowe, p. 95 (in Polish). [Google Scholar]
  • Buczyński P, Tończyk G. 2013. Dragonflies (Odonata) of Tuchola Forests (northern Poland). 1. Wdzydzki Landscape Park. Ann Univ M Curie-Skłodowska (C) 68: 75–103. [Google Scholar]
  • Bulánková E. 1997. Dragonflies (Odonata) as bioindicators of environment quality. Biologia 52: 177–180. [Google Scholar]
  • Carpenter SR, Stanley EH, Vander Zanden MJ. 2011. State of the World's freshwater ecosystems: physical, chemical, and biological changes. Ann Rev Environ Resour 36: 75–99. [Google Scholar]
  • Castro DMP, Hughes RM, Callisto M. 2013. Influence of peak flow changes on the macroinvertebrate drift downstream of a Brazilian hydroelectric dam. Braz J Biol 73: 775–782. [CrossRef] [PubMed] [Google Scholar]
  • Chovanec A, Raab R. 1997. Dragonflies (Insecta, Odonata) and the ecological status of newly created wetlands − examples for long-term bioindication programmes. Limnologica 37: 381–392. [Google Scholar]
  • Chovanec A, Waringer J. 2001. Ecological integrity of river-floodplain systems – assessment by dragonfly surveys. Regul Rivers Res Manage 17: 493–507. [Google Scholar]
  • Chovanec A, Waringer J, Raab R, Laister G. 2004. Lateral connectivity of a fragmented large river system: assessment on a macroscale by dragonfly surveys (Insecta: Odonata). Aquat Conserv Mar Freshw Ecosyst 14: 163–178. [Google Scholar]
  • Conrad KF, Wilson KH, Whitefield K, Harvey IF, Thomas CJ, Sheratt TN. 2002. Characteristics of dispersing Ischnura elegans and Coenagrion puella (Odonata): age, size, morph and ectoparasitism. Ecography 25: 439–445. [CrossRef] [Google Scholar]
  • Corbet PS. 1999. Dragonflies. Behaviour and ecology of Odonata. Colchester: Harley Books, Colchester, 829 p. [Google Scholar]
  • Corbet PS. 2006. Forest as habitats for dragonflies (Odonata). In: Cordero Rivera A, ed. Forest and dragonflies. Fourth WDA International Symposium of Odonatology, Pontevedra (Spain), July 2005, Pensoft, Sofia – Moscow, pp. 13–36. [Google Scholar]
  • Czachorowski S, Lewandowski K, Wasilewska A. 1993. The importance of aquatic insects for the landscape integration in the catchment area of the River Gizela (Masurian Lake District, northeastern Poland). Acta Hydrobiol 35: 49–64. [Google Scholar]
  • da Silva Monteiro Júnior C, Juen L, Hamada N. 2015. Analysis of urban impacts on aquatic habitats in the central Amazon basin: adult odonates as bioindicators of environmental quality. Ecol Indic 48: 303–311. [CrossRef] [Google Scholar]
  • Dąbkowski P, Buczyński P, Zawal A, et al. 2016. The impact of dredging of a small lowland river on aquatic beetle fauna (Coleoptera). J Limnol 75: 472–487. [Google Scholar]
  • de Jonge VN, de Jong DJ. 2002. Ecological restoration in coastal areas in the Netherlands: concepts, dilemmas and some examples. Hydrobiologia 478: 7–28. [CrossRef] [Google Scholar]
  • Dolný A, Harabiš F, Mižičová H. 2014. Home range, movement, and distribution patterns of the threatened dragonfly Sympetrum depressiusculum (Odonata: Libellulidae): a thousand times greater territory to protect? PLOS ONE 9: e100408. [CrossRef] [PubMed] [Google Scholar]
  • Gerlach J, Samways MJ, Pryke J. 2013. Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Ins Conserv 17: 831–850. [CrossRef] [Google Scholar]
  • Hill MO, Gauch HG. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58. [CrossRef] [Google Scholar]
  • Hoffmann TA, Mason CF. 2005. Habitat characteristics and the distribution of Odonata in a lowland river catchment in eastern England. Hydrobiologia 539: 137–147. [CrossRef] [Google Scholar]
  • Holčík J, Macura V. 2001. Some problems with the interpretation of the impact of stream regulations upon the fish communities. Ekológia 20: 423–434. [Google Scholar]
  • Hubble DS, Hurst D. 2003. Management of small dug ponds for Odonata conservation and colonization in an area of valley mire and wet heathland (Bourne Valley, Dorset). J Br Dragonfly Soc 19: 24–34. [Google Scholar]
  • Kadoya T, Suda S, Washitani I. 2004. Dragonfly species richness on man-made ponds: effects of pond size and pond age on newly established assemblages. Ecol Res 19: 461–467. [CrossRef] [Google Scholar]
  • Kamada M, Woo H, Takemon Y. 2004. Ecological engineering for restoring river ecosystems in Japan and Korea. In: Hong S-K, Lee JA, Ihm B-S, Farina A, Son Y, Eun-Shik K, Choe JC, eds. Ecological Issues in a Changing World. Dordrecht: Kluwer, pp. 337–353. [Google Scholar]
  • Kiene S. 1996. Synthese von biologischer und wasserbaulicher Analyse zur Bewertung von renaturierten Fließgewässern der Oberrheinebene. Karlsruhe: Institut für Wasserbau und Kulturtechnik, 258 p. [Google Scholar]
  • Kondracki J. 2000. Regional geography of Poland. Warszawa: Wydawnictwo Naukowe PWN, 440 p. (in Polish). [Google Scholar]
  • Koprowska L, Jabłońska-Barna I. 2007. Biomonitoring of the Łyna River (North Poland) in the years 1974–2006 on the basis of the benthic macroinvertebrates. Oceanol Hydrobiol St 36 (Suppl. 4): 49–54. [Google Scholar]
  • Lampert W, Sommer U. 1997. Limnoecology: The Ecology of Lakes and Streams. Oxford: Oxford University Press, 382 p. [Google Scholar]
  • Lüderitz V, Jüpner R, Müller S, Feld CK. 2004. Renaturalisation of streams and rivers − the special importance of integrated ecological methods in measurement of success. An example of Saxony Anhalt (Germany). Limnologica 34: 249–263. [CrossRef] [Google Scholar]
  • Motta RL, Uieda VS. 2004. Diet and trophic groups of an aquatic insect community in a tropical stream. Braz J Biol 64: 809–817 (in Portuguese). [CrossRef] [PubMed] [Google Scholar]
  • Müller O. 1995. Ökologische Untersuchungen an Gomphiden (Odonata: Gomphidae) unter besonderer Berücksichtigung ihrer Larvenstadien. Göttingen: Cuvillier Verlag, 234 p. [Google Scholar]
  • Naiman RJ, Magnuson JJ, McKnight DM, Stanford JA, Karr JR. 1995. Freshwater ecosystems and management: a national initiative. Science 270: 584–585. [CrossRef] [Google Scholar]
  • Outomuro D, Torralba-Burrial A, Ocharan FJ. 2010. Distribution of the Iberian Calopteryx damselflies and its relation with bioclimatic belts: evolutionary and biogeographic implications. J Ins Sci 10: 6. [Google Scholar]
  • Phelps HL. 2001. Biomonitoring Anacostia River Estuary pollutants with the Asiatic clam (Corbicula fluminea): possible effects of dredging. Final Technical Report. Washington, DC: DC Water Resources Research Center, 17 p. [Google Scholar]
  • Pickess BP. 2004. Rapid colonisation of a newly dug pond on a Polish heathland. J Br Dragonfly Soc 20: 4. [Google Scholar]
  • Płaska W, Zawal A, Kurzątkowska A, Stępień E, Szlauer-Łukaszewska A. 2016. The effect of dredging of a small lowland river (Krąpiel − NW Poland) on aquatic Heteroptera. Ann Zool Fenn 53: 139–153. [CrossRef] [Google Scholar]
  • Poff NL, Zimmerman JKH. 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshw Biol 55: 194–205. [Google Scholar]
  • Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC. 2006. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J N Am Benthol Soc 25: 730–755. [CrossRef] [Google Scholar]
  • Principe RE, del Carmen Corigliano M. 2006. Benthos, drifting and marginal macroinvertebrate assemblages in a lowland river: temporal and spatial variations and size structure. Hydrobiologia 553: 303–317. [CrossRef] [Google Scholar]
  • Rosenberg DM, McCully P, Pringle CM. 2000. Global-scale environmental effects of hydrological alterations: Introduction. BioSci 50: 746–751. [CrossRef] [Google Scholar]
  • Rüppell G, Hilfert-Rüppell D, Rehfeldt G, Schütte C. 2005. Prachtlibellen Europas. Hohenwarsleben: Westarp Wissenschaften, 255 p. [Google Scholar]
  • Sahlén G, Ekestubbe K. 2001. Identification of dragonflies (Odonata) as bioindicators of general species richness in boreal forest lakes. Biodiv Conserv 10: 673–690. [CrossRef] [Google Scholar]
  • Smith EP, Orvos DR, Cairns Jr J. 1993. Impact assessment using the before-after-control-impact (BACI) model: concerns and comments. Can J Fish Aquat Sci 50: 627–637. [Google Scholar]
  • Sternberg K, Buchwald R, eds. 1999. Die Libellen Baden-Württembergs. Band 1. Allgemeiner Teil, Zygoptera. Stuttgart (Hohenheim): Eugen Ulmer, 468 p. [Google Scholar]
  • Sternberg K, Buchwald R, eds. 2000. Die Libellen Baden-Württembergs. Band 2. Groβlibellen (Anisoptera), Literatur. Stuttgart (Hohenheim): Eugen Ulmer, 712 p. [Google Scholar]
  • Stettmer C. 1996. Colonisation and dispersal patterns of banded (Calopteryx splendens) and beautiful demoiselles (C. virgo) (Odonata: Calopterygidae) in south east German streams. Eur J Ent 93: 579–593. [Google Scholar]
  • Stryjecki R. 2013. A faunistic and ecological characterization of the water mites (Acari: Hydrachnidia) of the highly anthropologically transformed Mietiułka river in Polesie National Park. Ochr Środow Zas Nat 24: 11–15. [Google Scholar]
  • Svendsen KM, Renshaw CE, Magilligan FJ, Nislow KH, Kaste JM. 2009. Flow and sediment regimes at tributary junctions on a regulated river: impact on sediment residence time and benthic macroinvertebrate communities. Hydrol Process 23: 284–296. [CrossRef] [Google Scholar]
  • Szlauer-Łukaszewska A, Zawal A. 2014. The impact of river dredging on ostracod assemblages in the Krąpiel River (NW Poland). Fundam Appl Limnol 185: 295–305. [CrossRef] [Google Scholar]
  • ter Braak CJF. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179. [CrossRef] [Google Scholar]
  • ter Braak CJF, Prentice IC. 1988. A theory of gradient analysis. Adv Ecol Res 18: 271–371. [CrossRef] [Google Scholar]
  • ter Braak CJF, Verdonschot PFM. 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57: 255–289. [CrossRef] [Google Scholar]
  • Tończyk G, Pakulnicka J. 2006. Dragonflies (Odonata) of “Tucholskie Forests” National Park − analysis of data from the year 2004. In: Banaszak J, Tobolski K, eds. Park Narodowy Bory Tucholskie. U progu nowej dekady. Wydawnictwo Uniwersytetu im. Bydgoszcz: Kazimierza Wielkiego w Bydgoszczy, pp. 209–221 (in Polish). [Google Scholar]
  • Verberk WCEP, Calosi P. 2012. Oxygen limits heat tolerance and drives heat hardening in the aquatic nymphs of the gill breathing damselfly Calopteryx virgo (Linnaeus, 1758). J Therm Biol 37: 224–229. [CrossRef] [Google Scholar]
  • Ward JV, Tockner K, Schiemer F. 1999. Biodiversity of floodplain ecosystems: ecotones and connectivity. Regul Rivers Res Manage 15: 125–139. [CrossRef] [Google Scholar]
  • Wendzonka J. 2005. Identification key to the imagines of Polish dragonflies (Odonata). Odonatrix 1 (Suppl. 1): 1–26 (in Polish). [Google Scholar]
  • Wildermuth H. 2001. Das Rotationsmodell zur Pflege kleiner Moorgewässer – Simulation naturgemässer Dynamik. Nat Schutz Landsch Plan 33: 269–273. [Google Scholar]
  • Wildermuth H. 2008. Die Falkenlibellen Europas. Corduliidae. Hohenwarsleben: Westarp Wissenschaften, 497 p. [Google Scholar]
  • Zawal A, Stępień E, Szlauer-Łukaszewska A, et al. 2015. The influence of a lowland river dredging (the Krąpiel in NW Poland) on water mite fauna (Acari: Hydrachnidia). Fundam Appl Limnol 186: 217–232. [CrossRef] [Google Scholar]
  • Zawal A, Czachorowski S, Stępień E, et al. 2016a. Early post-dredging recolonization of caddisflies (Insecta: Trichoptera) in a small lowland river (NW Poland). Limnology 17: 71–85. [CrossRef] [Google Scholar]
  • Zawal A, Sulikowska-Drozd A, Stępień E, Szlauer-Łukaszewska A, Jankowiak Ł. 2016b. Regeneration of the molluscan fauna of a small lowland river after dredging. Fundam Appl Limnol 187: 281–293. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.