Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 417, 2016
Article Number 45
Number of page(s) 10
Published online 19 December 2016
  • Baki A, Zhu D, Rajaratnam N. 2014. Mean flow characteristics in a rock-ramp-type fish pass. J Hydraul Eng 140 (2): 156–168. [Google Scholar]
  • Belcher SE, Jerram N, Hunt JCR. 2003. Adjustment of a turbulent boundary layer to a canopy of roughness elements. J Fluid Mech 488: 369–398. [CrossRef] [Google Scholar]
  • Cassan L, Tien T, Courret D, Laurens P, Dartus D. 2014. Hydraulic resistance of emergent macroroughness at large Froude numbers: design of nature-like fishpasses. J Hydraul Eng 140 (9): 04014043. [Google Scholar]
  • Coceal O, Belcher SE. 2004. A canopy model of mean winds through urban areas. Q J R Meteorol Soc 130 (599): 1349–1372. [CrossRef] [Google Scholar]
  • Defina A, Bixio A. 2005. Mean flow turbulence in vegetated open channel flow. Water Resour Res 41: 1–12. [Google Scholar]
  • FAO. 2002. Fish passes – design, dimensions and monitoring. Rome: FAO, 138 p. [Google Scholar]
  • Florens E, Eiff O, Moulin F. 2013. Defining the roughness sublayer and its turbulence statistics. Exp Fluids 54 (4): 1–15. [Google Scholar]
  • Ghisalberti M, Nepf HM. 2006. The structure of the shear layer in flows over rigid and flexible canopies. Environ Fluid Mech 6: 277–301. [CrossRef] [Google Scholar]
  • Heimerl S, Krueger F, Wurster H. 2008. Dimensioning of fish passage structures with perturbation boulders. Hydrobiologia 609 (1): 197–204. [CrossRef] [Google Scholar]
  • Huai W-x, Chen Z-b, Han J, Zhang L-x, Zeng Y-h. 2009. Mathematical model for the flow with submerged and emerged rigid vegetation. J Hydrodyn B 21 (5): 722–729. [Google Scholar]
  • Huthoff F, Augustijn DCM, Hulscher SJMH. 2007. Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation. Water Resour Res 43 (6): W06413 [CrossRef] [Google Scholar]
  • Idelcick IE. 1986. Mémento des pertes de charges. 3e édition. Eyrolles, EDF. [Google Scholar]
  • Jarvela J. 2005. Effect of submerged flexible vegetation on flow structure and resistance. J Hydrol 307 (1–4): 233–241. [CrossRef] [Google Scholar]
  • Katul GG, Poggi D, Ridolfi L. 2011. A flow resistance model for assessing the impact of vegetation on flood routing mechanics. Water Resour Res 47 (8): 1–15. [CrossRef] [Google Scholar]
  • King AT, Tinoco RO, Cowen EA. 2012. A k-ε turbulence model based on the scales of vertical shear and stem wakes valid for emergent and submerged vegetated flows. J Fluid Mech 701: 1–39. [CrossRef] [Google Scholar]
  • Klopstra D, Barneveld H, van Noortwijk J, van Velzen E. 1997. Analytical model for hydraulic resistance of submerged vegetation. In: Proceedings of the 27th IAHR Congress, pp. 775–780. [Google Scholar]
  • Konings AG, Katul GG, Thompson SE. 2012. A phenomenological model for the flow resistance over submerged vegetation. Water Resour Res 48 (2). [Google Scholar]
  • Kouwen N, Unny TE. 1969. Flow retardance in vegetated channels. J Irrigat Drain Div 95 (2): 329–344. [Google Scholar]
  • Kubrak E, Kubrak J, Rowinski PM. 2008. Vertical velocity distributions through and above submerged, flexible vegetation. Hydrol Sci J 53 (4): 905–920. [CrossRef] [Google Scholar]
  • Larinier M, Travade F, Porcher JP. 2006. Fishways: biological basis, design criteria and monitoring. Bull Fr Peche Piscic 364 (Suppl.): 208 p. ISBN 92-5-104665-4. [Google Scholar]
  • Larinier M, Courret D, Gomes P. 2006. Technical Guide to the Concept on nature-like Fishways. Rapport GHAAPPE RA.06.05-V1, 5 (in French). [Google Scholar]
  • Lopez F, Garcia M. 2001. Mean flow and turbulence structure of open-channel flow through non-emergent vegetation. J Hydraul Eng 127 (5): 392–402. [CrossRef] [Google Scholar]
  • Luhar M, Rominger J, Nepf H. 2008. Interaction between flow, transport and vegetation spatial structure. Environ Fluid Mech 8: 423–439. [CrossRef] [Google Scholar]
  • Meijer DG, Velzen EHV. 1999. Prototype scale flume experiments on hydraulic roughness of submerged vegetation. In: 28th International Conference, Int. Assoc. of Hydraul. Eng. and Res., Graz, Austria. [Google Scholar]
  • Murphy EG, Nepf H. 2007. Model and laboratory study of dispersion in flows with submerged vegetation. Water Resour Res 43 (5): 1–12. [Google Scholar]
  • Nepf HM. 1999. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour Res 35 (2): 479–489. [CrossRef] [Google Scholar]
  • Nepf HM. 2012. Hydrodynamics of vegetated channels. J Hydraul Res 50 (3): 262–279. [Google Scholar]
  • Nezu I, Sanjou M. 2008. Turbulence structure and coherent motion in vegetated canopy open-channel flows. J Hydro-Environ Res 2 (2): 62–90. [Google Scholar]
  • Nikora N, Nikora V, O’Donoghue T. 2013. Velocity profiles in vegetated open-channel flows: combined effects of multiple mechanisms. J Hydraul Eng 139 (10): 1021–1032. [CrossRef] [Google Scholar]
  • Nikora V, Goring D, McEwan I, Griffiths G. 2001. Spatially averaged open-channel flow over rough bed. J Hydraul Eng 127 (2): 123–133. [Google Scholar]
  • Pagliara S, Das R, Carnacina I. 2008. Flow resistance in large-scale roughness conditions. Can J Civil Eng 35: 1285–1293. [CrossRef] [Google Scholar]
  • Poggi D, Krug C, Katul GG. 2009. Hydraulic resistance of submerged rigid vegetation derived from first-order closure models. Water Resour Res 45 (10). [Google Scholar]
  • Poggi D, Porporato A, Ridolfi L. 2004. The effect of vegetation density on canopy sub-layer turbulence. Bound-Layer Meteorol 111: 565–587. [CrossRef] [Google Scholar]
  • Rice C, Kadavy K, Robinson K. 1998. Roughness of loose rock riprap on steep slopes. J Hydraul Eng 124 (2): 179–185. [CrossRef] [Google Scholar]
  • Righetti M, Armanini A. 2002. Flow resistance in open channel flows with sparsely distributed bushes. J Hydrol 269 (1–2): 55–64. [CrossRef] [Google Scholar]
  • Shimizu Y, Tsujimoto T. 1994. Numerical analysis of turbulent open-channel flow over vegetation layer using a k-ε turbulence model. J Hydrosc Hydraul Eng 11 (2): 57–67. [Google Scholar]
  • Tran DT. 2015. Metrologie et modelisation des ecoulements a forte pente autour d’obstacles: application au dimensionnement des passes naturelles, Ph.D. thesis, INPT (in French). [Google Scholar]
  • Yang W, Choi S-U. 2009. Impact of stem flexibility on mean flow and turbulence structure in depth-limited open channel flows with submerged vegetation. J Hydraul Res 47 (4): 445–454. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.