Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 417, 2016
Article Number 12
Number of page(s) 5
Published online 12 February 2016
  • Akiyama M. and Nishigami K., 1959. Ecological studies on algal flora in Lake Shinji and Nakano-umi: PartT: Distribution of macroscopic algae. Bull. Shimane Univ., 9, 9–75. [Google Scholar]
  • Birks H.H., 2001. Plant Macrofossils. In: Smol J.P., Birks H.J.B. and Last W.M. (eds.), Tracking Environmental Change Using Lake Sediments. 3, Kluwer Academic Publishers, 49–74. [Google Scholar]
  • Blindow I., Hargeby A. and Andersson G., 2002. Seasonal changes of mechanisms maintaining clear water in shallow lake with abundant Chara vegetation. Aquat. Bot., 72, 315–334. [CrossRef] [Google Scholar]
  • Casanova M.T., 2013. Review of the species concepts Chara fibrosa and C. flaccida (Characeae, Charophyceae). Aust. Syst. Bot., 26, 291–297. [CrossRef] [Google Scholar]
  • Casanova M.T. and Karol K.G., 2014. A revision of Chara sect. Protochara, comb. et stat. nov. (Characeae: Charophyceae). Aust. Syst. Bot., 27, 23–37. [CrossRef] [Google Scholar]
  • Crawford S.A., 1979. Farm pond restoration using Chara vulgaris vegetation. Hydrobiologia, 62, 17–32. [CrossRef] [Google Scholar]
  • Davidson T.A., Sayer C.D., Bennion H., David C., Rose N. and Wade M.P., 2005. A 250 year comparison of historical, macrofossil and pollen records of aquatic plants in a shallow lake. Freshwater Biol., 50, 1671–1686. [CrossRef] [Google Scholar]
  • Hilt S., Gross E.M., Hupfer M., Morscheid H., Mahlmann L., Melzer A., Poltz J., Sandrock S., Scharf E.M., Schneider S. and Weyer K.V., 2006. Restoration of submerged vegetation in shallow eutrophic lakes-A guideline and state of the art in Germany. Limnologia, 36, 155–171. [Google Scholar]
  • Hiratsuka J., Yamamuro M. and Ishitobi Y., 2006. Satoumi Moku tori monogatari. (The story of harvesting submerged aquatic plant), Seibutsu Kennkyu-Sha, Tokyo, 141 p. [Google Scholar]
  • Imahori K. and Kasaki H., 1977. Class Charophyceae. In: Hirose, H. and Yamagishi, T. (eds.) Uchida Rokakuho Publishing, Tokyo, 761–829. [Google Scholar]
  • Jeppesen E., Sondergaard M., Sondergaard M. and Christoffersen K., 1998. The structuring role of submerged macrophytes in lakes, Springer, New York, 423 p. [Google Scholar]
  • Kanai Y., Inouchi Y., Yamamuro M. and Tokuoka T., 1997. Sedimentation rate and environment in Lake Shinji, Shimane prefecture. J. Jpn Geochem., 32, 71–85. [Google Scholar]
  • Kasaki H., 1964. The Charophyta from the lakes of Japan. J. Hattori Bot. Lab., 27, 217–314. [Google Scholar]
  • Kawahata C., Yamamuro M. and Shirakawa Y., 2013. Changes in alkaline band formation and calcification of corticated charophyte Chara globuraris. SpringerPlus, 2, 85. [CrossRef] [PubMed] [Google Scholar]
  • Komuro T. and Yamamuro M., 2012. Development of a shipboard apparatus for use in sieving lacustrine sediments containing oospores and seeds of aquatic vegetation. Jpn J. Bull. Water Plant Soc., 97, 29–33. [Google Scholar]
  • Komuro T. and Ymamuro M., 2013. Estimation of the aquatic plant community area in Lake Shinji reconstructed with the aerial photographs taken by the US forces in 1940’s. Jpn J. Ecol. Civil Eng., 16, 51–59. [CrossRef] [Google Scholar]
  • Nõges P., Tuvikene L., Feldmann T., Tõnnno I., Künnap H., Luup H., Salujõe J. and Nõges T., 2003. The role of charophytes in increasing water transparency: a case study of two shallow lakes in Estonia. Hydrobiologia, 506, 567–573. [Google Scholar]
  • Rodrigo M.A., Alonso-Guillén J.L. and Soulié-Märsche I., 2010. Reconstruction of the former charophyte community out of the fructifications identified in Albufera de València lagoon sediments. Aquat. Bot., 92, 14–22. [CrossRef] [Google Scholar]
  • Sakayama H., Nozaki H., Kasaki H. and Hara Y., 2002. Taxonomic re-examination of Nitella (Charales, Charophyceae) from Japan, based on microscopical studies of oospore wall ornamentation and rbcL gene sequences. Phycologia, 41, 397–408. [CrossRef] [Google Scholar]
  • Scheffer M., Carpenter S., Foley J.A., Folke C. and Walker B., 2001. Catastrophic shifts in ecosystems. Nature, 413, 591–596. [CrossRef] [PubMed] [Google Scholar]
  • Van den Berg M.S., Scheffer M. and Coops H., 1998. The role of Characeaen algae in the management of eutrophic shallow lakes. J. Phycol., 34, 750–756. [CrossRef] [Google Scholar]
  • Van Donk E. and van de Bund W.J., 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot., 72, 261–274. [Google Scholar]
  • Wood R.D., 1965. Monograph of the Characeae. In: Wood, R.D. and Imahori, K. (eds.) J. Cramer, Weinheim, 1–904. [Google Scholar]
  • Yamamuro M., 2012. Herbicide-induced macrophyte-to-phytoplankton shifts in Japanese lagoons during the last 50 years: consequences for ecosystem services and fisheries. Hydrobiologia, 699, 5–19. [CrossRef] [Google Scholar]
  • Yamamuro M., Kamiya H. and Ishitobi Y., 2014. Water quality before and after the break out of submerged plants at Lake Shinji. Jpn J. Limnol., 75, 99–105. [CrossRef] [Google Scholar]
  • Yoshimura S., 1937. Kosyougaku (Limnology), Sanseidou, Tokyo, 427 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.