Knowl. Manag. Aquat. Ecosyst.
Number 417, 2016
Topical Issue on Fish Ecology
Article Number 10
Number of page(s) 9
Published online 05 February 2016
  • Alexandre C., Quintella B.R., Silva A., Mateus C., Romão F., Branco P., Ferreira M.T. and Almeida P.R., 2013. Use of electromyogram telemetry to assess the behavior of the Iberian barbel (Luciobarbus bocagei Steindachner, 1864) in a pool-type fishway. Ecol. Eng., 51, 191–202. [CrossRef] [Google Scholar]
  • Armstrong G., Aprahamian M., Fewings G., Gough P., Reader N. and Varallo P., 2004. Environment agency fish pass manual: guidance notes on the legislation, selection and approval of fish passes in England and Wales, Environment Agency, Wales, UK. [Google Scholar]
  • Beamish F., 1978. Swimming capacity, locomotion. In: Hoar W.S. and Randall D.J. (eds.), Fish Physiology. Vol. VII, pp. 101−187. [Google Scholar]
  • Branco P., Santos J.M., Katopodis C., Pinheiro A. and Ferreira M.T., 2013. Effect of flow regime hydraulics on passage performance of Iberian chub (Squalius pyrenaicus) (Günther, 1868) in an experimental pool-and-weir fishway. Hydrobiologia, 714, 145–154. [CrossRef] [Google Scholar]
  • Brett J.R., 1964. The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Board Can., 21, 1183–1226. [CrossRef] [Google Scholar]
  • Bunt C.M., Castro-Santos T. and Haro A., 2011. Performance of fish passage structures at upstream barriers to migration. River Res. Appl., 28, 457–478. [CrossRef] [Google Scholar]
  • Castro-Santos T., 2002. Swimming performance of upstream migrant fishes: new methods, new perspectives, Doctoral dissertation, University of Massachusetts Amherst. [Google Scholar]
  • Castro-Santos T., 2004. Quantifying the combined effects of attempt rate and swimming capacity on passage through velocity barriers. Can. J. Fish. Aquat. Sci., 61, 1602–1615. [CrossRef] [Google Scholar]
  • Castro-Santos T., 2005. Optimal swim speeds for traversing velocity barriers: an analysis of volitional high-speed swimming behavior of migratory fishes. J. Exp. Biol., 208, 421–432. [CrossRef] [PubMed] [Google Scholar]
  • Castro-Santos T. and Haro A., 2003. Quantifying migratory delay: a new application of survival analysis methods. Can. J. Fish. Aquat. Sci., 60, 986–996. [CrossRef] [Google Scholar]
  • Castro-Santos T. and Haro A. 2010. Fish guidance and passage at barriers. In: Domenici P.B. and Kapoor B.G. (eds.), Fish Locomotion: An Eco-ethological Perspective, Science Publishers, 48–62. [Google Scholar]
  • Castro-Santos T. and Perry R.W., 2012. Time-to-event analysis as a framework for quantifying fish passage performance. In: Telemetry techniques: a user guide for fisheries research. American Fisheries Society, Bethesda, Maryland, 427–452. [Google Scholar]
  • Castro-Santos T., and Vono V., 2013. Posthandling Survival and PIT Tag Retention by Alewives-A Comparison of Gastric and Surgical Implants. N. Am. J. Fish. Manage., 33, 790–794. [CrossRef] [Google Scholar]
  • Castro-Santos T., Haro A. and Walk S., 1996. A passive integrated transponder (PIT) tag system for monitoring fishways. Fish. Res., 28, 253–261. [CrossRef] [Google Scholar]
  • Castro-Santos T., Cotel A. and Webb P., 2009. Fishway evaluations for better bioengineering: an integrative approach. Challenges for Diadromous Fishes in a Dynamic Global Environment, 557. [Google Scholar]
  • Castro-Santos T., Sanz-Ronda J. and Ruiz-Legazpi J., 2013. Breaking the speed limit-comparative sprinting performance of brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta). Can. J. Fish. Aquat. Sci., 70, 280–293. [CrossRef] [Google Scholar]
  • Clay, C. H. 1995. Design of Fishways and Other Fish Facilities. Lewis Publishers. Ann Arbor, MI. [Google Scholar]
  • Clough S., Lee-Elliott I., Turnpenny A., Holden S. and Hinks C., 2004. Swimming speeds in fish: phase 2. R&D Technical Report W2-049/TR1. Environment Agency, Bristol. [Google Scholar]
  • Cooke S.J. and Hinch S.G., 2013. Improving the reliability of fishway attraction and passage efficiency estimates to inform fishway engineering, science, and practice. Ecol. Eng., 58, 123–132. [CrossRef] [Google Scholar]
  • Council E., 1986. EEC Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. 358, 1–28. [Google Scholar]
  • Doadrio I., 2001. Atlas y libro rojo de la ictiofauna continental española, NIMAM-CSCI, Madrid. [Google Scholar]
  • Doadrio I., Perea S., Garzón-Heydt P. and González Y.J.L., 2011. Ictiofauna continental española. Bases para su seguimiento.Ministerio de Medio Ambiente y Medio Rural y Marino, Centro de Publicaciones. [Google Scholar]
  • Elvira B., Almodóvar A. and Nicola G.G., 1998. Impacto de las obras hidráulicas en la ictiofauna: Dispositivos de paso para peces en las presas de España, Organismo Autónomo Parques Nacionales, Madrid. [Google Scholar]
  • Ficke A.D., Myrick C.A. and Kondratieff M.C., 2012. The effects of PIT tagging on the swimming performance and survival of three nonsalmonid freshwater fishes. Ecol. Eng., 48, 86–91. [CrossRef] [Google Scholar]
  • Franklin A.E., Haro A., Castro-Santos T. and Noreika J., 2012. Evaluation of nature-like and technical fishways for the passage of alewives at two coastal streams in New England. Trans. Am. Fish. Soc., 141, 624–637. [CrossRef] [Google Scholar]
  • Gowans A.R., Armstrong J.D. and Priede I.G., 1999. Movements of adult Atlantic salmon in relation to a hydroelectric dam and fish ladder. J. Fish Biol., 54, 713–726. [CrossRef] [Google Scholar]
  • James R.S. and Johnston I.A., 1998. Influence of spawning on swimming performance and muscle contractile properties in the short-horn sculpin. J. Fish Biol., 53, 485–501. [CrossRef] [Google Scholar]
  • Larinier M., 2002a. Biological factors to be taken into account in the design of fishways, the concept of obstructions to upstream migration. Bull. Fr. Pêche Pisc., 364, 28–38. [Google Scholar]
  • Larinier M., 2002b. Pool fishways, pre-barrages and natural bypass channels. Bull. Fr. Pêche Pisc., 364, 54–82. [Google Scholar]
  • Makrakis S., Miranda L.E., Gomes L.C., Makrakis M.C. and Junior H.M., 2010. Ascent of neotropical migratory fish in the Itaipu Reservoir fish pass. River Res. Appl., 27, 511–519. [CrossRef] [Google Scholar]
  • Mallen-Cooper M., 1999. Developing fishways for non-salmonid fishes: a case study from the Murray River in Australia. Innovations in Fish Passage Technology, 173. [Google Scholar]
  • Mallen-Cooper M. and Brand D.A., 2007. Non-salmonids in a salmonid fishway: what do 50 years of data tell us about past and future fish passage? Fish Manage. Ecol., 14, 319–332. [CrossRef] [Google Scholar]
  • Mateus C.S., Quintella B.R. and Almeida P.R., 2008. The critical swimming speed of Iberian barbel Barbus bocagei in relation to size and sex. J. Fish Biol., 73, 1783–1789. [CrossRef] [Google Scholar]
  • McKenzie D.J. and Claireaux G. 2010. Effects of environmental factors on the physiology of sustained aerobic exercise. In: Fish Locomotion-an ethoecological perspective. Science Publishers, New Hampshire, 296–332. [Google Scholar]
  • Noonan M.J., Grant J.W. and Jackson C.D., 2012. A quantitative assessment of fish passage efficiency. Fish Fish., 13, 450–464. [Google Scholar]
  • Ostrand K.G., Zydlewski G.B., Gale W.L. and Zydlewski J.D., 2011. Long term retention, survival, growth, and physiological indicators of juvenile salmonids marked with passive integrated transponder tags. American Fisheries Society Symposium, 76. [Google Scholar]
  • Pedersen L., Koed A. and Malte H., 2008. Swimming performance of wild and F1-hatchery-reared Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) smolts. Ecol. Freshwat. Fish, 17, 425−431. [CrossRef] [Google Scholar]
  • Plaut I., 2002. Does pregnancy affect swimming performance of female Mosquitofish, Gambusia affinis? Funct. Ecol., 16, 290–295. [CrossRef] [Google Scholar]
  • Pompeu P. and Martinez C.B., 2007. Swimming performance of the migratory Neotropical fish Leporinus reinhardti (Characiformes: Anostomidae). Neotrop. Ichthyol., 5, 139–146. [CrossRef] [Google Scholar]
  • Puertas J., Cea L., Bermúdez M., Pena L., Rodríguez Á, Rabuñal J.R., Balairón L., Lara Á, and Aramburu E. 2012. Computer application for the analysis and design of vertical slot fishways in accordance with the requirements of the target species. Ecol. Eng., 48, 51–60. [CrossRef] [Google Scholar]
  • Rajaratnam N., Van der Vinne G. and Katopodis C., 1986. Hydraulics of vertical slot fishways. J. Hydraul. Eng., 112, 909–927. [Google Scholar]
  • Rodríguez T.T., Agudo J.P., Mosquera L.P. and González E.P., 2006. Evaluating vertical-slot fishway designs in terms of fish swimming capabilities. Ecol. Eng., 27, 37–48. [CrossRef] [Google Scholar]
  • Romão F., Quintella B.R., Pereira T.J. and Almeida P.R., 2012. Swimming performance of two Iberian cyprinids: the Tagus nase Pseudochondrostoma polylepis (Steindachner, 1864) and the bordallo Squalius carolitertii (Doadrio, 1988). J. Appl. Ichthyol., 28, 26–30. [Google Scholar]
  • Rosgen D.L. and Silvey H.L., 1996. Applied river morphology, Wildland Hydrology Pagosa Springs, Colorado. [Google Scholar]
  • Sanz-Ronda F.J., Bravo-Córdoba F.J. and Martínez de Azagra A., 2010. Estaciones de aforo V-flat y peces migradores de la Península Ibérica: problemas y soluciones. Ingeniería Civil, 158, 111–119. [Google Scholar]
  • Sanz-Ronda F.J., Ruiz-Legazpi J., Bravo-Córdoba F.J., Makrakis S. and Castro-Santos T., 2015. Sprinting performance of two Iberian fish: Luciobarbus bocagei and Pseudochondrostoma duriense in an open channel flume. Ecol. Eng., 83, 61–70. [CrossRef] [Google Scholar]
  • Silva A.T., Santos J.M., Franco A.C., Ferreira M.T. and Pinheiro A.N., 2009. Selection of Iberian barbel Barbus bocagei (Steindachner, 1864) for orifices and notches upon different hydraulic configurations in an experimental pool-type fishway. J. Appl. Ichthyol., 25, 173–177. [Google Scholar]
  • Silva A.T., Katopodis C., Santos J.M., Ferreira M.T. and Pinheiro A.N., 2012. Cyprinid swimming behaviour in response to turbulent flow. Ecol. Eng., 44, 314–328. [CrossRef] [Google Scholar]
  • Stuart I.G. and Berghuis A.P., 2002. Upstream passage of fish through a vertical-slot fishway in an Australian subtropical river. Fish. Manage. Ecol., 9, 111–122. [CrossRef] [Google Scholar]
  • Thiem J.D., Broadhurst B.T., Lintermans M., Ebner B.C., Clear R.C. and Wright D., 2013. Seasonal differences in the diel movements of Macquarie perch (Macquaria australasica) in an upland reservoir. Ecol. Freshwat. Fish, 22, 145–156. [CrossRef] [Google Scholar]
  • Travade F. and Larinier M., 2002. Monitoring techniques for fishways. Bull. Fr. Pêche Pisc., 364, 166–180. [CrossRef] [EDP Sciences] [Google Scholar]
  • Wagner R.L., Makrakis S., Castro-Santos T., Makrakis M.C., Pinheiro J.H. and Belmont R.F., 2012. Passage performance of long-distance upstream migrants at a large dam on the Paraná River and the compounding effects of entry and ascent. Neotrop. Ichthyol., 10, 785–795. [CrossRef] [Google Scholar]
  • Wang R.W., David L. and Larinier M., 2010. Contribution of experimental fluid mechanics to the design of vertical slot fish passes. Knowl. Manag. Aquat. Ecosyst., 396, 02. [CrossRef] [EDP Sciences] [Google Scholar]
  • Weaver C.R., 1963. Influence of water velocity upon orientation and performance of adult migrating salmonids. Fish. Bull., 63, 24. [Google Scholar]
  • White L.J., Harris J.H. and Keller R.J., 2010. Movement of three non-salmonid fish species through a low-gradient vertical-slot fishway. River Res. Appl., 27, 499–510. [CrossRef] [Google Scholar]
  • Yan G.J., He X.K., Cao Z.D. and Fu S.J., 2012. The trade-off between steady and unsteady swimming performance in six cyprinids at two temperatures. J. Therm. Biol., 37, 424–431. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.