Knowl. Managt. Aquatic Ecosyst.
Number 416, 2015
Topical Issue on Fish Ecology
Article Number 27
Number of page(s) 14
Published online 09 November 2015
  • Alheit J., Möllmann C., Dutz J., Kornilovs G., Loewe P., Mohrholz V. and Wasmund N., 2005. Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s. Ices. J. Mar. Sci., 62, 1205–1215. [CrossRef] [Google Scholar]
  • Almodovar A., Nicola G.G., Ayllon D. and Elvira B., 2012. Global warming threatens the persistence of Mediterranean brown trout. Glob. Change Biol., 18, 1549–1560. [Google Scholar]
  • Aprahamian M.W., Aprahamian C.D., Bagliniere J.L., Sabatie M.R. and Alexandrino P.J., 2003. Alosa alosa and Alosa fallax spp.: literature review and bibliography. Rand technical report W1- 014/TR. Environment Agency, Bristol, UK. [Google Scholar]
  • Bagliniere J.L., Sabatie M.R., Rochard E., Alexandrino A. and Aprahamian M.W., 2003. The allis shad Alosa alosa: biology, ecology, range and status of populations. In: Limburg K.E. and Waldmann J.R. (eds.), Biodiversity, status and conservation of the worlds shads, American Fisheries Society, Bethesda, 85–102. [Google Scholar]
  • Beare D.J., Burns F., Greig A., Jones E.G., Peach K., Kienzle M., McKenzie E. and Reid D.G., 2004. Long-term increases in prevalence of North Sea fishes having southern biogeographic affinities. Mar. Ecol. Prog. Ser., 284, 269–278. [CrossRef] [Google Scholar]
  • Blaxter J.H.S., 1992. The effect of temperature on larval fishes. Neth. J. Zool., 42, 336–357. [CrossRef] [Google Scholar]
  • Clave D., 2011. Manuel Pour L’Elevage de Larves de Grande Alose (in French). Report for the Life-Project LIFE06 NAT/D/000005: The re-introduction of the Allis shad (Alosa alosa) to the Rhine system. MIGADO, Le Passage D’Agen, France. [Google Scholar]
  • Crawley N.E., 2013. The global impact of climate change on fish. Dissertation, Brunel University. [Google Scholar]
  • De Groot S.J., 1990. The former allis and twaite shad fisheries of the Lower Rhine, the Netherlands. J. Appl. Ichthyol., 6, 252–256. [CrossRef] [Google Scholar]
  • De Groot S.J., 2002. A review of the past and present status of anadromous fish species in the Netherlands: is restocking the Rhine feasible? Hydrobiologia, 478, 205–218. [CrossRef] [Google Scholar]
  • Hari R.E., Livingstone D.M., Siber R., Burkardt-Holm P. and Guettinger H., 2006. Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Glob. Change Biol., 12, 10–26. [Google Scholar]
  • Houde E.D., and Zastrow C.E., 1993. Ecosystem- and taxon-specific dynamic and energetics properties of larval fish assemblages. Bull. Mar. Sci., 53, 290–335. [Google Scholar]
  • Jakobsen T., Fogarty M.J., Megrey B.A. and Moksness E., 2009. Fish reproductive biology. John Wiley & Sons, Chichester, United Kingdom. [Google Scholar]
  • Jatteau P. and Fraty R., 2012. Étude de la tolérance à l’hypoxie des juvéniles de grande alose (Alosa alosa) (in French). IRSTEA Etude, 146, 1–15. [Google Scholar]
  • Jobling M., 1997. Temperature and growth: modulation of growth rate via temperature change. In: Wood C.M. and Mc Donald D.G. (eds.), Global warming Implications for freshwater and marine fish, Cambridge University Press, Cambridge, 225–254. [Google Scholar]
  • Jonsson B., Waples R.S. and Friedland K.D., 1999. Extinction considerations for diadromous fishes. Ices J. Mar. Sci., 56, 405–409. [CrossRef] [Google Scholar]
  • Klinger H., 2011. Final Report Life project LIFE06 NAT/D//000005 (The re-introduction of Allis shad (Alosa alosa) in the Rhine System) (in German). Landesamt für Natur, Umwelt und Verbraucherschutz in NRW (LANUV), Kirchhundem-Ahlbaum, Germany. [Google Scholar]
  • Kucharczyk D., Luczynski M., Kujawa R and Czerkies P., 1997. Effect of temperature on embryonic and larval development of bream (Abramis brama L.). Aquat. Sci., 59, 214–224. [Google Scholar]
  • Lanoux A., Etcheber H., Schmidt S., Sottolichio A., Chabaud G., Richard M. and Abril G., 2013. Factors contributing to hypoxia in a highly turbid, macrotidal estuary (the Gironde, France). Environ. Sci.: Process. Impacts, 15, 585–595. [Google Scholar]
  • Larinier M. and Travade F., 2002. The design of fishways for shad. Bull. Fr. Pêche Piscic., 346, 135–146. [CrossRef] [EDP Sciences] [Google Scholar]
  • Larnier K., Roux H., Dartus D. and Croze O, 2010. Water temperature modeling in the Garonne River (France). Knowl. Manag. Aquat. Ecosyst., 398, 04. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lassalle G., Beguer M., Beaulaton L. and Rochard E., 2008. Diadromous fish conservation plans need to consider global warming issues: An approach using biogeographical models. Biol. Conserv., 141, 1105–1118. [CrossRef] [Google Scholar]
  • Leuven R., Hendriks A.J., Huijbregts M., Lenders H., Matthews J. and van der Velde G., 2011. Differences in sensitivity of native and exotic fish species to changes in river temperature. Curr. Zool., 57, 852–862. [Google Scholar]
  • Limburg K.E. and Waldman J.R., 2009. Dramatic declines in North atlantic diadromous fishes. Bioscience, 59, 955–965. [CrossRef] [Google Scholar]
  • Lochet A., Boutry S. and Rochard E., 2009. Estuarine phase during seaward migration for allis shad Alosa alosa and twaite shad Alosa fallax future spawners. Ecol. Freshw. Fish, 18, 323–335. [CrossRef] [Google Scholar]
  • McDowall R.M., 1999. Different kinds of diadromy: different kinds of conservation problems. ICES J. Mar. Sci., 56, 410–413. [Google Scholar]
  • Navarro T., Carrapato C. and Ribeiro F., 2014. Effects of temperature, salinity and feeding frequency on growth and mortality of twaite shad (Alosa fallax) larvae. Knowl. Manag. Aquat. Ecosyst., 412, 07. [Google Scholar]
  • Noack S.,1980. Statistische Auswertung von Mess-und Versuchsdaten mit Taschenrechner und Tischcomputer (In German). Walter de Gruyter, Berlin, Germany. [Google Scholar]
  • Perry A.L., Low P.J., Ellis J.R. and Reynolds J.D., 2005. Climate change and distribution shifts in marine fishes. Science, 308, 1912–1915. [CrossRef] [PubMed] [Google Scholar]
  • Pörtner H.O., 2001. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften, 88, 137–146. [CrossRef] [PubMed] [Google Scholar]
  • Pörtner H.O., 2002. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol.A, 132, 739–761. [CrossRef] [Google Scholar]
  • Pörtner H.O., 2010. Oxygen-and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Bio., 213, 881–893. [CrossRef] [Google Scholar]
  • Pörtner H.O. and Farrell A.P., 2000. Ecology, physiology and climate change. Science, 322, 690–692. [Google Scholar]
  • Pörtner H.O. and Peck M.A., 2010. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J. Fish Biol., 77, 1745–1779. [Google Scholar]
  • Pörtner H.O., Van Dijk P., Hardewig I. and Sommer A., 2000. Levels of metabolic cold adaptation: tradeoffs in eurythermal and stenothermal ectotherms. In:Davison W., Howard-Williams C. and Broady P. (eds.), Antarctic Ecosystems: models for wider ecological understanding, Caxton Press, Christchurch, New Zealand, 109–122. [Google Scholar]
  • Pörtner H.O., Berdal B., Blust R. and Brix O., 2001. Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships. Cont. Shelf Res., 21, 1957–1997. [Google Scholar]
  • Pörtner H.O., Bennett A. F., Bozinovic F., Clarke A., Lardies M.A., Lucassen M., Pelster B., Schiemer F. and Stillman J.H., 2006. Tradeoffs in thermal adaptation: the need for a molecular to ecological integration. Physiol. Biochem. Zool., 79, 295–313. [CrossRef] [PubMed] [Google Scholar]
  • Rogado L., Alexandrino P., Almeida P.R., Alves J., Bochechas J., Cortes R., Domingos I., Filipe F., Madeira J. and Magalhães F., 2005. Alosa alosa, Sável (in Portuguese). In: Cabral M.J., Almeida J., Almeida P.R., Dellinger T., Ferrand de Almeida N., Oliveira M.E., Palmeirim J.M. Queiroz A.I., Rogado L. and Santos-Reis M. (eds.), Livro Vermelho dos Vertebrados de Portugal, Institudo da Conservação da Natureza, Lisboa, pp. 71–72. [Google Scholar]
  • Rombough P.J., 1997. The effects of temperature on embryonic and larval development. In: Wood C.M. and Mc Donald D.G. (eds.), Global warming Implications for freshwater and marine fish, Cambridge University Press, Cambridge, 225–254. [Google Scholar]
  • Rombough P.J., 1988. Respiratory gas exchange, aerobic metabolism, and Effects of Hypoxia During Early Life. In: Hoar W.S. and Randall D.J. (eds.), Fish Physiology, Academic Press, San Diego, 59–161. [Google Scholar]
  • Rougier T, Lambert P., Drouineau H., Girardin M., Castelnaud G.R., Carry L., Aprahamian M., Rivot E. and Rochard E., 2012. Collapse of allis shad, Alosa alosa, in the Gironde system (southwest France): environmental change, fishing mortality, or Allee effect? Ices J. Mar. Sci., 69, 1802–1811. [CrossRef] [Google Scholar]
  • Sousa R., Freitas F.E.P., Mota M., Nogueira A.J.A. and Antunes C., 2013. Invasive dynamics of the crayfish Procambarus clarkii (Girard, 1852) in the international section of the River Minho (NW of the Iberian Peninsula). Aquat. Conserv., 23, 656–666. [Google Scholar]
  • Wetherill G.B. and Brown D.W., 1991. Statistical Process Control. Chapman and Hall, New York. [Google Scholar]
  • Wolnicki J. and Korwin-Kossakowski M., 1993. Survival and growth of larval and juvenile tench, Tinca tinca L., fed different diets under controlled conditions. Aquac. Res., 24, 707–713. [CrossRef] [Google Scholar]
  • Zhang J., Gilbert D., Gooday A.J., Levin L., Naqvi S., Middelburg J.J., Scranton M., Ekau W., Pena A. and Dewitte B., 2010. Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences, 7, 1443–1467. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.