Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 416, 2015
Article Number 23
Number of page(s) 16
Published online 24 September 2015
  • AFNOR – Association Française de Normalisation, 1996. Détermination de l’inhibition de la croissance de Lemna minor. XP T:90–337. [Google Scholar]
  • APHA – American Public Health Association, AWWA – American Water Works Association, WEF – Water Environment Federation, 1995. Toxicity – Part 8000: 8–40 and 8–42. Standard methods for the Examination of Water and Wastewater, 19th edition. [Google Scholar]
  • Appenroth K.-J., Keresztes A., Sarvari A.E., Jaglarz S. and Fischer W., 2003. Multiple effects of chromate on Spirodela polyrhiza : Electron microscopy and biochemical investigations. Plant Biology, 5, 315–323. [CrossRef] [Google Scholar]
  • Appenroth K.-J., Luther A., Jetschke G. and Gabrys H., 2008. Modification of chromate toxicity by sulphate in duckweeds (Lemnaceae). Aquat. Toxicol., 89, 167–171. [CrossRef] [PubMed] [Google Scholar]
  • Appenroth K-J., Krech K., Keresztes A., Fischer W. and Koloczek H., 2010. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere, 78, 216–223. [CrossRef] [PubMed] [Google Scholar]
  • ASTM - American Society for Testing and Materials, 1991. Standard guide for conducting toxicity tests with Lemna gibba G3. E-1415-91: 1–10. [Google Scholar]
  • Canadian Environmental Protection Act 1999, 2013. Federal Environmental Quality Guidelines. Cobalt. Environment Canada: 10 p. [Google Scholar]
  • Charpentier S., Garnier J. and Flaugnatti R., 1987. Toxicity and bioaccumulation of cadmium in experimental cultures of duckweed, Lemna polyrhiza L. Bull. Environ. Contam. Toxicol., 38, 1055–1061. [CrossRef] [PubMed] [Google Scholar]
  • Chaudhary E. and Sharma P, 2014. Duckweed as a Test Organism for Eco toxicological Assessment of Wastewater. Int. J. Sci. Res., 3, 2073–2075. [Google Scholar]
  • Cowgill U.M., Milazzo D.P. and Landenberger B.D., 1991. The sensitivity of Lemna gibba G-3 and four clones of Lemna minor to eight common chemicals using a 7-day test. J. Water Pollut. Control Fed., 63, 991–998. [Google Scholar]
  • Dobbins L., Lewis M., Sankula S. and Thursby G., 2010. Exploration of methods for characterizing effects of chemical stressors to aquatic plants. USEPA. Office of Water, Office of Science and Technology, Washington, DC. [Google Scholar]
  • Doganlar Z.B., 2013. Metal accumulation and physiological responses induced by copper and cadmium in Lemna gibba, L. minor and Spirodela polyrhiza. Chem. Speciation Bioavailability, 25, 79–88. [CrossRef] [Google Scholar]
  • Dvořák V., Caldová J. and Trnková L., 2012. Differential Sensitivity Of the Lemnaceae Species To Chromium And Zinc. Proceedings of ECOpole, 2012, vol. 6, pp. 505–510. [Google Scholar]
  • Edelman M., 2015. The state of duckweed affairs in the literature. J. Int. Steering Committee on Duckweed Research and Applications, 3, 1–33. [Google Scholar]
  • Environment Canada. Method Development and Applications Section, Environmental Technology Centre, 2007. Biological Test Method: Test for measuring the inhibition of growth using the freshwater macrophyte, Lemna minor. Report EPS 1/RM/37, 2nd edition, 112 p. [Google Scholar]
  • Gatidou G., Stasinakis A.S. and Iatrou E.I., 2015. Assessing single and joint toxicity of three phenylurea herbicides using Lemna minor and Vibrio fischeri bioassays. Chemosphere, 119, 569–574. [CrossRef] [Google Scholar]
  • Gaur J.P. and Noraho N., 1995. Role of certain environmental factors on cadmium uptake and toxicity in Spirodela polyrhiza (L.) Schleid. and Azolla pinnata R. Br. Biomed. Environ. Sci., 8, 202–210. [PubMed] [Google Scholar]
  • Gaur J.P., Noraho N. and Chauhan Y.S., 1994. Relationship between heavy metal accumulation and toxicity in Spirodela polyrhiza (L.) Schleid. and Azolla pinnata R.Br. Aquatic Botany, 49, 183–192. [CrossRef] [Google Scholar]
  • Gausman M., 2006. A comparison of duckweed and standard algal phytotoxicity tests as indicators of aquatic toxicology. Institute of Environmental Sciences. A practicum submitted to the Faculty of Miami University, 39 p. [Google Scholar]
  • Hillman W.S., 1961. The Lemnaceae, or Duckweeds: A Review of the Descriptive and Experimental Literature. Bot. Rev., 27, 221–287. [CrossRef] [Google Scholar]
  • Hoffman D.J., Rattner B.A., Burton G.A., Jr. and Cairns J. Jr., (Eds.). 2003. Handbook of Ecotoxicology. 2nd edition. CRC Press, 1290 p. [Google Scholar]
  • Hudson M.S. and Hudson B., 1957. A Laboratory Test for Screening Chemicals for Toxicity to Submerged Aquatic Plants. Weeds, 5, 371–37. [CrossRef] [Google Scholar]
  • ISO 5725-1, 1994. Accuracy (trueness and precision) of measurement methods and results – Part 1: General principles and definitions. [Google Scholar]
  • ISO 20079, 2005. Water quality – Determination of the toxic effect of water constituents and waste water on duckweed (Lemna minor) – Duckweed growth inhibition test. [Google Scholar]
  • ISO/NP 20227, 2015 – Water quality – Determination of the growth inhibition effects of waste waters, natural waters and chemicals on the duckweed Spirodela polyrhiza – Method using a stock culture independent microbiotest. [Google Scholar]
  • Jacobs D.L., 1947. An ecological life history of Spirodela polyrrhiza (greater duckweed) with emphasis on the turion phase. Ecol. Monogr., 17, 437–4467. [CrossRef] [Google Scholar]
  • Jenkins J., Chow C., Choi C., Adam X.H., Cao J., Fuchs I., Schubert D., Rokhsar J., Schmutz T.P., Mayer M.K.F. and Messing J., 2014. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun., 5, 3311. [PubMed] [Google Scholar]
  • Jiang H.S., Li M., Chang F.Y., Li W. and Yin L.Y., 2012. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ. Toxicol. Chem., 31, 1880–1886. [CrossRef] [PubMed] [Google Scholar]
  • Kaszycki P., Gabrys H., Appenroth K.J., Jaglarz A., Sedziwy S., Walczak T. and Koloczek H., 2005. Exogenous applied sulphate as a tool to investigate transport and reduction of chromate in the duckweed Spirodela polyrhiza. Plant, Cell and Environment, 28, 260–268. [CrossRef] [Google Scholar]
  • Lakatos G., Mészaros I., Bohatka S., Szabo Z., Makadi M., Csatlos M. and Langer B., 1993. Application of Lemna species in ecotoxicological studies of heavy metals and organic biocides. Sci. Total Environ., 773–778. [Google Scholar]
  • Lakachauskiene R., Montvydiene D. and Marchiulioniene D., 1997. Duckweed as an ecotoxicological biotest. Lietuvos Mokslu Akademija.Ekologija, 1, 54–59. [Google Scholar]
  • Leblebici Z. and Aksoy A., 2011. Growth and lead accumulation capacity of Lemna minor and Spirodela polyrhiza (Lemnaceae): Interactions with nutrient enrichment. Water, Air, Soil Pollut., 214, 175–184. [CrossRef] [Google Scholar]
  • Lewis M.A., 1995. Use of freshwater plants for phytotoxicity testing: a review. Environ. Pollut., 87, 319–336. [CrossRef] [PubMed] [Google Scholar]
  • Loveson A. and Sivalingam R., 2012. Phytotoxicological assessment of two wetlands in Eloor, Kochi using aquatic macrophyte Spirodela polyrhiza. J. Env. Sci. Toxicol. Food Technol., 1, 44–49. [Google Scholar]
  • Loveson A. and Sivalingam R., 2013. Phytotoxicological assessment of two backwater wetlands in Kannamaly, Ernakulam using aquatic macrophyte Spirodela polyrhiza. J. Environ. Anal. Toxicol., 3, 1–5. [CrossRef] [Google Scholar]
  • Montvydienė D. and Marčiulionienė D., 2004. Assessment of toxic interactions of heavy metals in a multicomponent mixture using Lepidium sativum and Spirodela polyrrhiza. Environ. Toxicol., 19, 351–358. [CrossRef] [PubMed] [Google Scholar]
  • Montvydienė D. and Marčiulionienė D., 2007. Assessment of Toxic Interaction of Metals in Binary Mixtures Using Lepidium sativum and Spirodela polyrrhiza. Polish J. Environ. Stud., 16, 777–783. [Google Scholar]
  • Montvydienė D., Lakačauskienė R. and Marčiulionienė D., 1999. Investigations of Toxic and Genotoxic Effects of Heavy Metals and their Model Mixture on Plants. Acta Zoologica Lituanica, 9, 3–11. [CrossRef] [Google Scholar]
  • Montvydienė D., Lakačauskienė R. and Marçiulionienė F., 2000. Assessment of toxicity of heavy metal model and natural mixtures for higher plants. J. Botanica Lithuanica, 6, 281–297. [Google Scholar]
  • Müller R., Berghahn R. and Hilt S., 2010. Herbicide effects of metazachlor on duckweed (Lemna minor and Spirodela polyrhiza) in test systems with different trophic status and complexity. J. Environ. Sci. Health, Part B, 45, 95–101. [CrossRef] [Google Scholar]
  • Naumann B., Eberius M. and Appenroth K.-J., 2007. Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L.Clone St. J. Plant. Physiol., 164, 1656–1664. [CrossRef] [PubMed] [Google Scholar]
  • OECD Guidelines for the Testing of Chemicals, 2006. Guideline 221. Lemna sp. Growth Inhibition Test. [Google Scholar]
  • Pandey D.K., 1996. Relative toxicity of allelochemicals to aquatic weeds. Allelopathy J., 3, 241–246. [Google Scholar]
  • Saadi A., Guerbet M. and Garnier J., 2002. Influence of diethyldithiocarbamate on cadmium and copper toxicity to freshwater microphyte Spirodela polyrhiza: short communication. Water SA, 28, 107–110. [Google Scholar]
  • Sallenave R. and Fomin A., 1997. Some Advantages of the duckweed Test to Assess the toxicity of environmental samples. Acta hydrochim. hydrobiol., 25, 135–140. [CrossRef] [Google Scholar]
  • Singh A. and Malaviya P., 2013. Phytotoxic effect of chrome liquor on growth and chlorophyll content of Spirodela polyrrhiza L. Schleid. J. Appl. Nat. Sci., 5, 165–170. [Google Scholar]
  • Sinha S., Rai U.N. and Chandra P., 1995. Modulation of cadmium uptake and toxicity in Spirodela polyrrhiza (L.) Schleiden due to malathion. Environ. Monit. Assess., 38, 67–73. [CrossRef] [PubMed] [Google Scholar]
  • SIS – Swedish Standards Institute, 1995. Water quality – Determination of growth inhibition (7d) of Lemna minor duckweed SS 02 82 13, 15 p. [Google Scholar]
  • USEPA – United States Environmental Protection Agency, 1996. Aquatic plant toxicity test using Lemna spp. Tiers I and II. Ecological Effects Test Guidelines OPPTS 850.4400, pp. 96–156. [Google Scholar]
  • Wang W., 1986. Toxicity tests of aquatic pollutants by using common duckweed. Environ. Pollut., 11, 1–14. [CrossRef] [Google Scholar]
  • Wang W., 1989. Toxicity assessment of the aquatic environment using phytoassay methods. Illinois Department of Energy and Natural Resources, SWS Contract Report 455, 76 p. [Google Scholar]
  • Wang W., 1990. Literature review on duckweed toxicity testing. Environ. Res., 52, 7–22. [CrossRef] [PubMed] [Google Scholar]
  • Wang W., Haberer G., Gundlach H., Gläßer C., Nussbaumer T., Luo M.C., Lomsadze A., Borodovsky M., Kerstetter R.A., Shanklin J., Byrant D.W., Mockler J.C., Appenroth K-J., Grimwood J., Jenkins J., Chow J., Choi C., Adamp C., Cao X-H. and Fucks J., 2014. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun., 5, 1–21 [CrossRef] [Google Scholar]
  • Wang L.-L., Zhang G.-F., He X., Ge Feng F. and Zhou J-Y., 2013. Toxic effects of herbicide paraquat on different species of Lemnaceae. Chin. J. Ecology, 6, 1551–1556. [Google Scholar]
  • Xia Z.-Y., Zhang M.-O. and Wang L.F., 2009. Toxicity Action of Pb(II)with different concentrations on Lemma aequinoctialis and Spirodela polyrrhiza. Environ. Sci. Technol., 6, 123–129. [Google Scholar]
  • Xylander M., Augsten H. and Appenroth K.-J., 1993. Influence of nickel on the life cycle of the duckweed Spirodela polyrhiza (L.) Schleiden. J. Plant Physiol., 142, 208–213. [CrossRef] [Google Scholar]
  • Zhang X., Hu Y., Liu Y. and Chen B., 2011. Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.). J. Environ. Sci., 23, 601–606. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.