Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 412, 2014
Article Number 10
Number of page(s) 16
DOI https://doi.org/10.1051/kmae/2013092
Published online 14 March 2014
  • Aoki S., Fuse Y. and Yamada E., 2004. Determinations of humic substances and other dissolved organic matter and their effects on the increase of COD in Lake Biwa. Anal. Sci., 20, 159–164. [CrossRef] [PubMed] [Google Scholar]
  • Azam F., Fenchel T., Field J.G., Gray J.S., Meyer-Reil L.A. and Thingstad F., 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser., 10, 257–263. [CrossRef] [Google Scholar]
  • Bottrell H.H., Duncan A., Gliwicz Z.M., Grygierek E., Herzig A., Hillbricht-Ilkowska A., Kurasawa H., Larsson P. and Węgleńska T., 1976. A review of some problems in zooplankton production studies. Norw. J. Zool., 24, 419–456. [Google Scholar]
  • Carlson R.E., 1977. A trophic state index of lakes. Limnol. Oceanogr., 22, 361–369. [CrossRef] [Google Scholar]
  • Chróst R.J., 1984. Use of 14C-dissolved organic carbon (RDOC) released by algae as a realistic tracer of heterotrophic activity measurements for aquatic bacteria. Arch. Hydrobiol. Beih. Ergebn. Limnol., 19, 207–214. [Google Scholar]
  • Chróst R.J. and Siuda W., 2006. Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic layer in the pelagic zone of lakes along a eutrophication gradient. Limnol. Oceanogr., 51, 749–762. [CrossRef] [Google Scholar]
  • Clair T.A., Ehrman J., Kaczmarska I., Locke A., Tarasick D.W., Day K.E. and Maillet G., 2001. Will reduced summer UV-B levels affect zooplankton populations of temperate humic and clearwater lakes? Hydrobiologia, 462, 75–89. [CrossRef] [Google Scholar]
  • Clesceri L.S, Greenberg A.E. and Eaton A.D. (eds.), 1998. Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC, 1325 p. [Google Scholar]
  • Cole J.J., Pace M.L., Carpenter S.R. and Kitchell J.F., 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol. Oceanogr., 45, 1718–1730. [CrossRef] [Google Scholar]
  • Cole J.J., Carpenter S.R., Kitchell J.F. and Pace M.L., 2002. Pathways of organic C utilization in small lakes: results from a whole-lake 13C addition and coupled model. Limnol. Oceanogr., 47, 1664–1675. [CrossRef] [Google Scholar]
  • Dunalska J., 2010. Hydrochemistry and trophic status of Lakes Kuc, Majcz Wielki and Mikołajskie. In: Dunalska J. (ed.), Environmental conditions and trophic state of Lakes Kuc, Majcz Wielki and Mikołajskie (Mazurian Lake District), UWM, Olsztyn, 19–37. [Google Scholar]
  • Dunalska J.A., 2011. Total organic carbon as a new index for monitoring trophic state in lakes. Oceanol. Hydrobiol. Studies, 40, 112–115. [Google Scholar]
  • Dunalska A.J., Górniak D., Jaworska B. and Gaiser E., 2012. Effect of temperature on organic matter transformation in a different ambient nutrient availability. Ecol. Eng., 49, 27–34. [CrossRef] [Google Scholar]
  • Ejsmont-Karabin J., 1998. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydrobiol., 45, 513–522. [Google Scholar]
  • Flößner D., 1972. Krebstiere, Crustacea Kiemen- und Blattfüßer, Branchiopoda, Fischläuse, Branchiura, Veb Gustav Fischer, Verlag, Jena 501 p. [Google Scholar]
  • Fukushima T., Park J., Imai A. and Matsushiage K., 1996. Dissolved organic carbon in a eutrophic lake; dynamics, biodegrability and origin. Aquat. Sci., 58, 139–157. [CrossRef] [Google Scholar]
  • Górniak D., 2010. Bacterioplankton and virioplankton in Lakes: Kuc, Majcz Wielki and Mikołajskie. In: Dunalska J. (ed.), Environmental conditions and trophic state of Lakes Kuc, Majcz Wielki and Mikołajskie (Mazurian Lake District), UWM, Olsztyn, 37–54. [Google Scholar]
  • Grey J., Jones R.I. and Sleep D., 2001. Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnol. Oceanogr., 46, 505–513. [CrossRef] [Google Scholar]
  • Hanson P.C., Bade D.L., Carpenter S.R. and Kratz T.K., 2003. Lake metabolism: Relationship with dissolved organic carbon and phosphorus. Limnol. Oceanogr., 48, 1112–1119. [CrossRef] [Google Scholar]
  • Häder D-P.,Kumar H.D., Smith R.C. and Worrest R.C., 2007. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci., 6, 267–285. [CrossRef] [PubMed] [Google Scholar]
  • Hermanowicz W., Dojlido J., Zerbe J., Dożańska W. and Koziorowski B., 1999. Physico-chemical analyses of water and wastewater, Arkady, Warszawa, 555 p. [Google Scholar]
  • Hillbricht-Ilkowska A. and Kajak Z., 1986. Parameters and indices useful in monitoring of functional and structural changes in lake ecosystems during the process of their eutrophication. In: Hillbricht-Ilkowska A. (ed.), Monitoring of lake ecosystems, Ossolineum, Wrocław, 23–45. [Google Scholar]
  • Hitchcock J., Mitrovic S.M., Kobayashi T. and Westhorpe D.P., 2010. Responses of estuarine bacterioplankton, phytoplankton and zooplankton to dissolved organic carbon (DOC) and inorganic nutrient additions. Estuaries Coasts, 33, 78–91. [CrossRef] [Google Scholar]
  • Hoppe H.G., 1984. Attachment of bacteria: advantage or disadvantages for survival in the aquatic environment. In: Marshall K.C. (ed.), Microbial adhesion and aggregation, Dahlem Konferenzen, Springer-Verlag, Berlin, 283–302. [Google Scholar]
  • Hygum B.H., Petersen J.W. and Søndergaard M., 1997. Dissolved organic carbon release by zooplankton grazing activity-a high-quality substrate pool for bacteria. J. Plankton Res., 19, 97–111. [CrossRef] [Google Scholar]
  • Jack L.D., Gilbert J.J., 1997. Effects of metazoan predators on ciliates in freshwater plankton communities. J. Eukaryot. Microbiol., 44, 194–199. [CrossRef] [Google Scholar]
  • Jansson M., Bergström A.K., Blomqvist A., Isaksson A. and Jonsson A., 1999. Impact of allochthonous organic carbon on microbial food web dynamics and structure in Lake Örträsket. Arch. Hydrobiol., 144, 409–428. [Google Scholar]
  • Jansson M., Bergström A.K., Blomqvist A. and Drakare S., 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology, 81, 3250–3255. [CrossRef] [Google Scholar]
  • Jaworska B., 2010. Phytoplankton of Lakes Kuc, Majcz Wielki and Mikołajskie. In: Dunalska J. (ed.), Environmental conditions and trophic state of Lakes Kuc, Majcz Wielki and Mikołajskie (Mazurian Lake District), UWM, Olsztyn, 55–72. [Google Scholar]
  • Karlsson J., Jonsson A., Meili M. and Jansson M., 2003. Control of zooplankton dependence on allochthonous organic carbon in humic and clear-water lakes in northern Sweden. Limnol. Oceanogr., 48, 269–276. [CrossRef] [Google Scholar]
  • Kasprzak K. and Niedbała W., 1981. Biocenotic indices in quantitative study. In: Górny M. and Grüm L. (eds.), Methods applied in soil zoology, PWN, Warsaw, 397–416. [Google Scholar]
  • Kawecka B. and Eloranta P.V., 1994. The outline of algae ecology in freshwater and terrestrial environments. PWN Scientific Publishers, Warsaw, 252 p. [Google Scholar]
  • Kiefer F., Fryer G., 1978. Das zooplankton der Binnengewässer, Teil 2, E. Schweizerbart’ sche Verlagsbuchhandlung, Stuttgart, 380 p. [Google Scholar]
  • Koste W., 1978. Rotatoria: Die Radertiere Mitteleuropas. V: 1+2, Gebruder Borntraeger, Berlin- Sttuttgart, I text band, 600 p. [Google Scholar]
  • Lampert W., 1978. Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr., 23, 831–834. [CrossRef] [Google Scholar]
  • de,Lange H., Morris D.P. and Williamson C.E., 2003. Solar ultraviolet photodegradation of DOC may stimulate freshwater food webs. J. Plankton Res., 25, 111–117. [CrossRef] [Google Scholar]
  • Leech D.M., Williamson C.E., Moeller R.E. and Hargreaves B.R., 2005. Effects of ultraviolet radiation on the seasonal vertical distribution of zooplankton: a database analysis. Arch. Hydrobiol., 162, 445–464. [CrossRef] [Google Scholar]
  • Legendre L. and Rivkin R.B., 2008. Planktonic food webs: microbial hub approach. Mar. Ecol. Prog. Ser., 365, 289–309. [CrossRef] [Google Scholar]
  • Obernosterer I. and Herndl G.J., 1995. Phytoplankton extracellular release and bacterial growth: dependence on the inorganic N:P ratio. Mar. Ecol. Prog. Ser., 116, 247–257. [CrossRef] [Google Scholar]
  • Olsen Y., Vårum K.M. and Jensen A., 1986. Some characteristics of the carbon compounds released by Daphnia. J. Plankton Res., 8, 505–517. [CrossRef] [Google Scholar]
  • Olsen Y., Andersen T., Gismervik I. and Vadstein O., 2007. Protozoan and metazoan zooplankton-mediated carbon flows in nutrient-enriched coastal planktonic communities. Mar. Ecol. Prog. Ser., 331, 67–83. [CrossRef] [Google Scholar]
  • Park J., Aizaki M., Fukushima T. and Otsuki A., 1997. Production of labile and refractory dissolved organic carbon by zooplankton excretion: an experimental study using large outdoor continuous flow-through ponds. Can. J. Fish. Aquat. Sci., 54, 434–443. [CrossRef] [Google Scholar]
  • Perez-Fuentetaja A., Dillon P.J., Yan N.D. and McQueen D.J., 1999. Significance of dissolved organic carbon in the prediction of thermocline depth in small Canadian Shield Lakes. Aquat. Ecol., 33, 127–133. [CrossRef] [Google Scholar]
  • Pourriot R., 1977. Food and feeding habits of Rotifera. Arch. Hydrobiol. Beih. Ergebn.Limnol., 8, 243–260. [Google Scholar]
  • Reynolds C.S., 2008. A changing paradigm of pelagic food webs. Int. Rev. Hydrobiol., 93, 517–531. [CrossRef] [Google Scholar]
  • Richardot M., Debroas D., Thouvenot A., Sargos D., Berthon L. and Dévaux J., 2001. Influence of cladoceran grazing activity on dissolved organic matter, enzymatic hydrolysis and bacterial growth. J. Plankton Res., 23, 1249–1261. [CrossRef] [Google Scholar]
  • Ruttner-Kolisko A. 1977. Suggestions for biomass calculations of plankton rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol., 8, 71–76. [Google Scholar]
  • Salonen K. and Hammar T., 1986. On the importance of dissolved organic carbon matter in the nutrition of zooplankton in some lake waters. Oecologia, 68, 246–253. [CrossRef] [PubMed] [Google Scholar]
  • Sønddergaard M., Borch N.H. and Reiman B., 2001. Dynamics of biodegradable DOC produced by freshwater plankton communities. Aquat. Microb. Ecol., 23, 73–83. [CrossRef] [Google Scholar]
  • Stoeckner D.K. and Capuzzo J.M., 1990. Predation on protozoa: its importance to zooplankton. J. Plankton Res., 12, 891–908. [CrossRef] [Google Scholar]
  • Strom S., Benner R., Ziegler S. and Dagg M.J., 1997. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceanogr., 42, 1364–1374. [CrossRef] [Google Scholar]
  • Ter Braak CJF., Šmilauer P., 2002. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA, 500 p. [Google Scholar]
  • Tranvik L.J., 1992. Allochthonous organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia, 229, 107–114. [CrossRef] [Google Scholar]
  • Vadstein O., Harkjerr B.O. and Jansen A., 1989. Cycling of organic carbon in the photic zone of an eutrophic lake with special reference to heterotrophic bacteria. Limnol. Oceanogr., 34, 840–855. [CrossRef] [Google Scholar]
  • Weishar J.L., Aiken G.R., Bergamaschi B.A., Fram M.S., Fuji R. and Mopper K., 2003. Evaluation of specific absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol., 37, 4702–4708. [CrossRef] [PubMed] [Google Scholar]
  • Wetzel R.G., 1983. Limnology. 2nd edn., Saunders, Philadelphia, 767 p. [Google Scholar]
  • Wiliamson C.E., 1983. Invertebrate predation on planktonic rotifers. Hydrobiologia, 104, 385–396. [CrossRef] [Google Scholar]
  • Zieliński P. and Górniak A., 1999. Examination of dissolved organic carbon in natural waters. Aparat. Bad. Dyd., 3, 37–45. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.