Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 411, 2013
Article Number 05
Number of page(s) 14
Published online 12 September 2013
  • American Public Health Association (APHA), 1992. Standard methods for the examination of water and wastewater, 18th Edition. American Public Health Association, Washington, D.C. [Google Scholar]
  • Beklioglu M., Altinayar G. and Tan C.O., 2006. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Arch Hydrobiol, 166, 535–556. [CrossRef] [Google Scholar]
  • Bucak T., Saraoğlu E., Levi E., Tavşanoğlu N., Çakiroğlu A.İ., Jeppesen E. and Beklioğlu M., 2012. The influence of water level on macrophyte growth and trophic interactions in eutrophic Mediterranean shallow lakes: A mesocosm experiment with and without fish. Freshwater Biol., 57, 1631–1642. [Google Scholar]
  • Castillio M.M., Morales H., Valencia E., Morales J.J. and Cruz-Motta J.J., 2012. The effects of human land use on flow regime and water chemistry of headwater streams in the highlands of Chiapas. Knowl. Managt. Aquatic Ecosyst., 407, 09. [CrossRef] [EDP Sciences] [Google Scholar]
  • Charou E., Stefouli M., Dimitrakopoulos D., Vasiliou E. and Mavrantza O.D., 2010. Using remote sensing to assess impact of mining activities on land and water resources. Mine Water Environ., 29, 45–52. [CrossRef] [Google Scholar]
  • Coops H., Beklioglu M. and Crisman T.L., 2003. The role of water-level fluctuations in shallow lake ecosystems – workshop conlusions. Hydrobiologia, 506–509, 23–27. [CrossRef] [Google Scholar]
  • Crisman T.L., Mitraki C. and Zalidis G., 2005. Integrating vertical and horizontal approaches for management of shallow lakes and wetlands. Ecol. Eng., 24, 379–389. [CrossRef] [Google Scholar]
  • Gianniou S.K. and Antonopoulos V., 2007. Evaporation and energy budget in Lake Vegoritis, Greece. J. Hydrol., 345, 212–223. [CrossRef] [Google Scholar]
  • Jeppesen E., Jensen J.P., Søndergaard M. and Lauridsen T., 1999. Trophic dynamics in turbid and clear water lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia, 408-409, 217–231. [CrossRef] [Google Scholar]
  • Jeppesen E., Jensen J.P., Søndergaard M., Lauridsen T. and Landkildehus F., 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biol., 45, 201–218. [Google Scholar]
  • Kagalou I. and Leonardos I., 2009. Typology, classification and management issues of Greek lakes: implication of the Water Framework Directive (2000/60/EC). Environ. Monit. Assess., 50, 469–484. [CrossRef] [Google Scholar]
  • Kłosowski S., Tomaszevicz G.H. and Tomaszevicz H., 2006. The expansion and decline of charophyte communities in lakes within the Sejny Lake District (north-eastern Poland) and changes in water chemistry. Limnologica, 36, 234–240. [CrossRef] [Google Scholar]
  • Kőrner S., 2002. Loss of submerged macrophytes in shallow lakes in north-eastern Germany. Int. Rev. Hydrobiol., 87, 375–384. [CrossRef] [Google Scholar]
  • Krolová M., Čížkova H., Hejzlar J. and Poláková S., 2013. Response of littoral macrophytes to water level fluctuations in a storage reservoir. Knowl. Managt. Aquatic Ecosyst., 408, 07. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kuczyńska-Kippen N., 2003. The distribution of rotifers (Rotifera) within a single Myriophyllum bed. Hydrobiologia, 506–509, 327–331. [CrossRef] [Google Scholar]
  • Lake M.D., Hicks B.J., Wells R.D.S. and Dugdale T.M., 2002. Consumption of submerged aquatic macrophytes by rudd (Scardinius erythrophthalmus L.) in New Zealand. Hydrobiologia, 47, 13–22. [CrossRef] [Google Scholar]
  • Lammens E.H.R.R., 1999. The central role of fish in lake restoration and management. Hydrobiologia, 395-396, 191–198. [CrossRef] [Google Scholar]
  • Manolaki P. and Papastergiadou E., 2013. The impact of environmental factors on the distribution pattern of aquatic macrophytes in a middle-sized Mediterranean stream. Aquat. Bot., 104, 34–46. [CrossRef] [Google Scholar]
  • Mastrantuono L. and Mancinelli T., 2005. Littoral invertebrates associated with aquatic plants and bio assessment of ecological status in Lake Bracciano (Central Italy). J. Limnol., 64, 43–53. [CrossRef] [Google Scholar]
  • Michaloudi E., Zarfdjian M. and Economidis P.S., 1997. The zooplankton of lake Mikri Prespa. Hydrobiologia, 351, 77–94. [CrossRef] [Google Scholar]
  • Naselli-Flores L. and Barone R., 2005. Water–level fluctuations in Mediterranean reservoirs: Setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia, 548, 85–99. [CrossRef] [Google Scholar]
  • Nielsen D.L. and Brock M.A., 2009. Modified water regime and salinity as a consequence of climate change: prospects for wetlands of Southern Australia. Climatic Change, 95, 523–533. [CrossRef] [Google Scholar]
  • Papastergiadou E. and Babalonas D., 1993. The Relationships between Hydrochemical Environmental factors and the Aquatic Macrophytic Vegetation in Stagnant and Slow Flowing Waters II. Evaluation of Plant Associations Indicative Value. Arch. Hydrobiol., 90, 493–506. [Google Scholar]
  • Papastergiadou E., Kagalou I., Stefanidis K., Retalis A. and Leonardos I., 2010. Effects of Anthropogenic Influences on the Trophic State, Land Uses and Aquatic Vegetation in a Shallow Mediterranean Lake: Implications for Restoration. Water Resour. Manag., 24, 415–435. [CrossRef] [Google Scholar]
  • Paschos I. and Kagalou I., 2000. PESCA Project, Final Report, Ministry of Agriculture, Igoumenitsa, Greece. [Google Scholar]
  • Prado P., Caiola N. and Ibáñez C., 2013. Spatio-Temporal patterns of submerged macrophytes in three hydrologically altered Mediterranean coastal lagoons. Estuaries Coasts, 36, 414–429. [CrossRef] [Google Scholar]
  • Romo S., Miracle M.R., Villena M.-J., Rueda J., Ferriol C. and Vicente E., 2004. Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshwater Biol., 49, 1593–1607. [CrossRef] [Google Scholar]
  • Skoulikidis N., Kaberi H. and Sakellariou D., 2008. Patterns, origin, and possible effects of sediment pollution in a Mediterranean lake. Hydrobiologia, 613, 71–83. [CrossRef] [Google Scholar]
  • StJacques J., Douglas M.S.V., Price N., Drakulic N. and Gubala C.P., 2005. The effect of fish introductions on the diatom and cladoceran communities of Lake Opeongo, Ontario, Canada. Hydrobiologia, 549, 99–113. [CrossRef] [Google Scholar]
  • Stefanidis K. and Papastergiadou E., 2010. Influence of hydrophyte abundance on the spatial distribution of zooplankton in selected lakes in Greece. Hydrobiologia, 656, 55–65. [CrossRef] [Google Scholar]
  • Voutilainen A. and Huuskonen H., 2010. Long-term changes in the water quality and fish community of a large boreal lake affected by rising water temperatures and nutrient-rich sewage discharges – with special emphasis on the European perch. Knowl. Managt. Aquatic Ecosyst., 397, 03. [CrossRef] [EDP Sciences] [Google Scholar]
  • Walseng B., Hessen D.O., Halvorsen G. and Schartau A.K., 2006. Major contribution from littoral crustaceans to zooplankton species richness in lakes. Limnol. Oceanogr., 51, 2600–2616. [CrossRef] [Google Scholar]
  • Wichelns D. and Oster J.D., 2006. Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial. Agr. Water Manage., 86, 114–127. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.