Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 409, 2013
Article Number 07
Number of page(s) 19
DOI https://doi.org/10.1051/kmae/2013052
Published online 14 June 2013
  • Abrahamsson C., Johansson J., Sparén A. and Lindgren F., 2003. Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets. Chemometrics Intell. Lab. Syst., 69, 3–12. [CrossRef] [Google Scholar]
  • Aertsen W., Kint V., van Orshoven J., Özkan K. and Muys B., 2010. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol. Model., 221, 1119–1130. [CrossRef] [Google Scholar]
  • Aertsen W., Kint V., Van Orshoven J. and Muys B., 2011. Evaluation of modelling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis (SMAA). Environ. Modell. Softw., 26, 929–937. [CrossRef] [Google Scholar]
  • Alba-Tercedor A., 1996. Macroinvertebrados acuaticos y calidad de las aguas de los ríos, IV Simposio del Agua en Andalucía (SIAGA), Almería, 203–213. [Google Scholar]
  • Alcaraz-Hernández J.D., Martínez-Capel F., Peredo-Parada M. and Hernández-Mascarell A.B., 2011. Mesohabitat heterogeneity in four mediterranean streams of the Jucar river basin (Eastern Spain). Limnetica, 30, 363–378. [Google Scholar]
  • Allan J.D. and Castillo M.M., 2007. Stream ecology: structure and function of running waters, 2nd edn., Springer, Netherlands, 436 p. [Google Scholar]
  • Aparicio E., Vargas M.J., Olmo J.M. and de Sostoa A., 2000. Decline of native freshwater fishes in a Mediterranean watershed on the Iberian Peninsula: A quantitative assessment. Environ. Biol. Fishes, 59, 11–19. [CrossRef] [Google Scholar]
  • Aparicio E., Carmona-Catot G., Moyle P.B. and García-Berthou E., 2011. Development and evaluation of a fish-based index to assess biological integrity of Mediterranean streams. Aquat. Conserv.: Mar. Freshwat. Ecosyst., 21, 324–337. [CrossRef] [Google Scholar]
  • Armitage D.W. and Ober H.K., 2010. A comparison of supervised learning techniques in the classification of bat echolocation calls. Ecol. Inform., 5, 465–473. [CrossRef] [Google Scholar]
  • Beechie T.J., Sear D.A., Olden J.D., Pess G.R., Buffington J.M., Moir H., Roni P. and Pollock M.M., 2010. Process-based principles for restoring river ecosystems. Bioscience, 60, 209–222. [CrossRef] [Google Scholar]
  • Belmar O., Velasco J. and Martinez-Capel F., 2011. Hydrological classification of natural flow regimes to support environmental flow assessments in Intensively regulated Mediterranean Rivers, Segura River Basin (Spain). Environ. Manage., 47, 992–1004. [CrossRef] [PubMed] [Google Scholar]
  • Bernardo J.M., Ilhéu M., Matono P. and Costa A.M., 2003. Interannual variation of fish assemblage structure in a Mediterranean river: implications of streamflow on the dominance of native or exotic species. River Res. Appl., 19, 521–532. [CrossRef] [Google Scholar]
  • Breiman L., 2001a. Random Forests. Mach. Learn., 45, 5–32. [CrossRef] [Google Scholar]
  • Breiman L., 2001b. Statistical modeling: the two cultures. Stat. Sci., 16, 199–231. [CrossRef] [Google Scholar]
  • Breiman L., Friedman J., Olshen R. and Stone C., 1984. Classification and Regression Trees, Wadsworth International Group, Belmont, California, 368 p. [Google Scholar]
  • Caissie D., 2006. River discharge and channel width relationships for New Brunswick rivers. Canadian Technical Report of Fisheries and Aquatic Sciences, Rept. 2637, 26 p. [Google Scholar]
  • Carballo R., Cancela J., Iglesias G., Marín A., Neira X. and Cuesta T., 2009. WFD indicators and definition of the ecological status of rivers. Water Resour. Manag., 23, 2231–2247. [CrossRef] [Google Scholar]
  • Cheng L., Lek S., Lek-Ang S. and Li Z., 2012. Predicting fish assemblages and diversity in shallow lakes in the Yangtze River basin. Limnologica, 42, 127–136. [CrossRef] [Google Scholar]
  • CHJ, 2007. Estudio general sobre la Demarcación Hidrográfica del Júcar, Confederación Hidrográfica del Júcar, Madrid, 206 p. [Google Scholar]
  • Corbacho C. and Sánchez J.M., 2001. Patterns of species richness and introduced species in native freshwater fish faunas of a Mediterranean-type basin: the Guadiana River (southwest Iberian Peninsula). Regul. River., 17, 699–707. [CrossRef] [Google Scholar]
  • Costa R.M.S., Martínez-Capel F., Muñoz-Mas R., Alcaraz-Hernández J.D. and Garófano-Gómez V., 2012. Habitat suitability modelling at mesohabitat scale and effects of dam operation on the endangered Júcar nase, Parachondrostoma arrigonis (river Cabriel, Spain). River Res. Appl., 28, 740–752. [CrossRef] [Google Scholar]
  • Cutler D.R., Edwards T.C., Beard K.H., Cutler A., Hess K.T., Gibson J. and Lawler J.J., 2007. Random Forests for classification in ecology. Ecology, 88, 2783–2792. [CrossRef] [PubMed] [Google Scholar]
  • Demuth H., Beale M. and Hagan M., 2010. Neural network toolbox user’s guide, The MathWorks Inc, Natick, Massachusetts, 901 p. [Google Scholar]
  • Dimopoulos Y., Bourret P. and Lek S., 1995. Use of some sensitivity criteria for choosing networks with good generalization ability. Neural Process. Lett., 2, 1–4. [CrossRef] [Google Scholar]
  • Doadrio I., 2001. Atlas y libro rojo de los peces continentales de España, Ministerio de Medio Ambiente, Madrid, 358 p. [Google Scholar]
  • Doadrio I., 2002. Origen y Evolución de la Ictiofauna Continental Española. En: Atlas y libro rojo de los peces continentales de España. 2da ed, CSIC y Ministerio del Medio Ambiente, Madrid, 20–34. [Google Scholar]
  • Dolloff C.A., Hankin D.G. and Reeves G.H., 1993. Basinwide estimation of habitat and fish populations in streams, U.S. Department of Agriculture, Blacksburg, Virginia, 25 p. [Google Scholar]
  • Dormann C.F., 2011. Modelling species’ distributions. In: Jopp F., Reuter H. and Breckling B. (eds.), Modelling complex ecological dynamics: an Introduction into ecological modelling for students, teachers and scientists, Springer-Verlag, Berlin, 179–196. [Google Scholar]
  • Drew C.A., Wiersma Y. and Huettmann F., 2011. Predictive species and habitat modeling in landscape ecology: concepts and applications, Springer, New York, 328 p. [Google Scholar]
  • Estrela T., Fidalgo A., Fullana J., Maestu J., Pérez M.A. and Pujante A.M., 2004. Júcar Pilot River Basin, provisional article 5 report Pursuant to the Water Framework Directive, Confederación Hidrográfica del Júcar, Valencia, 200 p. [Google Scholar]
  • Evans J. and Cushman S., 2009. Gradient modeling of conifer species using random forests. Landsc. Ecol., 24, 673–683. [CrossRef] [Google Scholar]
  • Evans J.S., Murphy M.A., Holden Z.A. and Cushman S.A., 2011. Modeling species distribution and change using Random Forest. In: Drew C.A., Wiersma Y.F. and Huettmann F. (eds.), Predictive Species and Habitat Modeling in Landscape Ecology, Springer New York, 139–159. [Google Scholar]
  • Fausch K., Torgersen C., Baxter C. and Li H., 2002. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. Bioscience, 52, 483–498. [CrossRef] [Google Scholar]
  • Ferreira T., Oliveira J., Caiola N., De Sostoa A., Casals F., Cortes R., Economou A., Zogaris S., Garcia de Jalón D., Ilhéu M., Martinez-Capel F., Pont D., Rogers C. and Prenda J., 2007. Ecological traits of fish assemblages from Mediterranean Europe and their responses to human disturbance. Fisheries Manag. Ecol., 14, 473–481. [CrossRef] [Google Scholar]
  • Filipe A.F., Magalhães M.F. and Collares-Pereira M.J., 2010. Native and introduced fish species richness in Mediterranean streams: the role of multiple landscape influences. Divers. Distrib., 16, 773–785. [CrossRef] [Google Scholar]
  • Franklin J., 2010. Mapping species distributions: spatial inference and prediction, Cambridge University Press, New York, 338 p. [Google Scholar]
  • García-Berthou E., Alcaraz C., Pou-Rovira Q., Zamora L., Coenders G. and Feo C., 2005. Introduction pathways and establishment rates of invasive aquatic species in Europe. Can. J. Fish. Aquat. Sci., 62, 453–463. [CrossRef] [Google Scholar]
  • Garófano-Gómez V., Martínez-Capel F., Peredo-Parada M., Olaya-Marín E.J., Muñoz-Mas R., Costa R. and Pinar-Arenas L., 2011. Assessing hydromorphological and floristic patterns along a regulated Mediterranean river: The Serpis River (Spain). Limnetica, 30, 307–238. [Google Scholar]
  • Gevrey M., Dimopoulos I. and Lek S., 2003. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model., 160, 249–264. [CrossRef] [Google Scholar]
  • Goethals P., Dedecker A., Gabriels W., Lek S. and De Pauw N., 2007. Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquat. Ecol., 41, 491–508. [CrossRef] [Google Scholar]
  • Granado-Lorencio C., 1996. Ecología de peces, Universidad de Sevilla, Sevilla, 353 p. [Google Scholar]
  • Granado-Lorencio C., 2000. Ecología de comunidades: el paradigma de los peces de agua dulce, Universidad de Sevilla, Sevilla, 284 p. [Google Scholar]
  • Guisan A. and Zimmermann N.E., 2000. Predictive habitat distribution models in ecology. Ecol. Model., 135, 147–186. [CrossRef] [Google Scholar]
  • Gutiérrez-Estrada J.C. and Bilton D.T., 2010. A heuristic approach to predicting water beetle diversity in temporary and fluctuating waters. Ecol. Model., 221, 1451–1462. [CrossRef] [Google Scholar]
  • Hastie T., Tibshirani R. and Friedman J., 2009. The Elements of Statistical Learning: data mining, Inference and prediction, Springer, 768 p. [Google Scholar]
  • Hauser-Davis R.A., Oliveira T.F., Silveira A.M., Silva T.B. and Ziolli R.L., 2010. Case study: Comparing the use of nonlinear discriminating analysis and Artificial Neural Networks in the classification of three fish species: acaras (Geophagus brasiliensis), tilapias (Tilapia rendalli) and mullets (Mugil liza). Ecol. Inform., 5, 474–478. [CrossRef] [Google Scholar]
  • He Y., Wang J., Lek-Ang S. and Lek S., 2010. Predicting assemblages and species richness of endemic fish in the upper Yangtze River. Sci. Total Environ., 408, 4211–4220. [CrossRef] [PubMed] [Google Scholar]
  • Hermoso V. and Clavero M., 2011. Threatening processes and conservation management of endemic freshwater fish in the Mediterranean basin: a review. Mar. Freshwater Res., 62, 244–254. [CrossRef] [Google Scholar]
  • Hooten M.B., 2011. The state of spatial and spatio-temporal statistical modeling. In: Drew C., Wiersma Y. and Huettmann F. (eds.), Predictive Species and Habitat Modeling in Landscape Ecology, Springer New York, 29–41. [Google Scholar]
  • Ibarra A.A., Gevrey M., Park Y.-S., Lim P. and Lek S., 2003. Modelling the factors that influence fish guilds composition using a back-propagation network: assessment of metrics for indices of biotic integrity. Ecol. Model., 160, 281–290. [CrossRef] [Google Scholar]
  • Isa I.S., Omar S., Saad Z. and Osman M.K., 2010. Performance comparison of different multilayer perceptron network activation functions in automated weather classification. Proceedings of the 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, Kota Kinabalu, Malaysia, 71–75. [Google Scholar]
  • Jackson D.A., Peres-Neto P.R. and Olden J.D., 2001. What controls who is where in freshwater fish communities the roles of biotic, abiotic, and spatial factors. Can. J. Fish. Aquat. Sci., 58, 157–170. [Google Scholar]
  • Jorgensen S.E. and Fath B.D., 2011. Fundamentals of ecological modelling: applications in environmental management and research. 4th ed., Elsevier, Amsterdam, 432 p. [Google Scholar]
  • Kampichler C., Wieland R., Calmé S., Weissenberger H. and Arriaga-Weiss S., 2010. Classification in conservation biology: a comparison of five machine-learning methods. Ecol. Inform., 5, 441–450. [CrossRef] [Google Scholar]
  • Karul C., Soyupak S., Çilesiz A.F., Akbay N. and Germen E., 2000. Case studies on the use of neural networks in eutrophication modeling. Ecol. Model., 134, 145–152. [CrossRef] [Google Scholar]
  • Knudby A., LeDrew E. and Brenning A., 2010. Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. Remote Sens. Environ., 114, 1230–1241. [CrossRef] [Google Scholar]
  • Kroes M.J., Gough P.P., Wanningen H., Schollema P., Ordeix M. and Vesely D., 2006. From sea to source. Practical guidance for the restoration of fish migration in European Rivers. Interreg IIIC Project “Community Rivers”, Groningen, The Netherlands, 119 p. [Google Scholar]
  • Kurková V., 1992. Kolmogorov’s theorem and multilayer neural networks. Neural Netw., 5, 501-506. [CrossRef] [Google Scholar]
  • Leclere J., Oberdorff T., Belliard J. and Leprieur F., 2011. A comparison of modeling techniques to predict juvenile 0 + fish species occurrences in a large river system. Ecol. Inform., 6, 276–285. [CrossRef] [Google Scholar]
  • Lek S., Scardi M., Verdonschot P., Descy J.P. and Park Y.S. (eds.), 2005. Modelling community structure in freshwater ecosystems, Springer-Verlag, Berlin. [Google Scholar]
  • Leopold L.B., Wolman M.G. and Miller J.P., 1964. Fluvial processes in geomorphology, W.H. Freeman, San Francisco, 544 p. [Google Scholar]
  • Leprieur F., Brosse S., García-Berthou E., Oberdorff T., Olden J.D. and Townsend C.R., 2009. Scientific uncertainty and the assessment of risks posed by non-native freshwater fishes. Fish. Fish., 10, 88–97. [CrossRef] [Google Scholar]
  • Liaw A. and Wiener M., 2002. Classification and regression by Random Forest. R News, 2, 18–22. [Google Scholar]
  • Magalhães M.F., Beja P., Schlosser I.J. and Collares-Pereira M.J., 2007. Effects of multi-year droughts on fish assemblages of seasonally drying Mediterranean streams. Freshw. Biol., 52, 1494–1510. [CrossRef] [Google Scholar]
  • Maier H.R. and Dandy G.C., 2000. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ. Modell. Softw., 15, 101–124. [CrossRef] [Google Scholar]
  • Mastrorillo S., Dauba F., Oberdorff T., Guégan J.-F. and Lek S., 1998. Predicting local fish species richness in the garonne river basin. C.R. Acad. Sci. - Ser. III - Sciences de la Vie, 321, 423–428. [CrossRef] [Google Scholar]
  • MMARM, 2008. Orden MARM/2656/2008 de 10 septiembre, por la que se aprueba la instrucción de planificación hidrológica. BOE núm. 229, de 22 de septiembre de 2008., Ministerio de Medio Ambiente, y Medio Rural y Marino (MMARM), Madrid. [Google Scholar]
  • Mouton A.M., Alcaraz-Hernández J.D., De Baets B., Goethals P.L.M. and Martínez-Capel F., 2011. Data-driven fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers. Environ. Modell. Softw., 26, 615–622. [CrossRef] [Google Scholar]
  • Munné A., Prat N., Solà C., Bonada N. and Rieradevall M., 2003. A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquat. Conserv.: Mar. Freshwat. Ecosyst., 13, 147–163. [CrossRef] [Google Scholar]
  • Murphy M.A., Evans J.S. and Storfer A., 2010. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology, 91, 252–261. [CrossRef] [PubMed] [Google Scholar]
  • Naiman R.J., Decamps H. and Pollock M., 1993. The role of riparian corridors in maintaining regional biodiversity. Ecol. Appl., 3, 209–212. [CrossRef] [PubMed] [Google Scholar]
  • Oberdorff T., Guégan J.-F. and Hugueny B., 1995. Global scale patterns of fish species richness in rivers. Ecography, 18, 345–352. [CrossRef] [Google Scholar]
  • Olaya-Marín E.J., Martínez-Capel F., Soares Costa R.M. and Alcaraz-Hernández J.D., 2012. Modelling native fish richness to evaluate the effects of hydromorphological changes and river restoration (Júcar River Basin, Spain). Sci. Total Environ., 440, 95–105. [CrossRef] [PubMed] [Google Scholar]
  • Olden J.D. and Jackson D.A., 2002. Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model., 154, 135–150. [CrossRef] [Google Scholar]
  • Olden J.D., Poff N.L. and Bledsoe B.P., 2006. Incorporating ecological knowledge into ecoinformatics: An example of modeling hierarchically structured aquatic communities with neural networks. Ecol. Inform., 1, 33–42. [CrossRef] [Google Scholar]
  • Olden J.D., Lawler J.J. and Poff N.L., 2008. Machine learning methods without tears: A primer for ecologists. Q. Rev. Biol., 83, 171–193. [CrossRef] [PubMed] [Google Scholar]
  • Ollero A., Ibisate A., Gonzalo L., Acín V., Ballarín D., Díaz E., Gimeno M., Domenech S., Granado D., García H., Mora D. and Sánchez M. 2011. The IHG index for hydromorphological quality assessment of rivers and streams: updated version Limnetica, 30, 255–262. [Google Scholar]
  • Özesmi S.L., Tan C.O. and Özesmi U., 2006. Methodological issues in building, training, and testing artificial neural networks in ecological applications. Ecol. Model., 195, 83–93. [CrossRef] [Google Scholar]
  • Paredes-Arquiola J., Martinez-Capel F., Solera A. and Aguilella V., 2013. Implementing environmental flows in complex water resources systems–case study: the Duero river basin, Spain. River Res. Appl., 29, 451–468. [CrossRef] [Google Scholar]
  • Paredes-Arquiola J., Solera-Solera A., Martínez-Capel F., Momblanch-Benavent A. and Andreu-Álvarez J. Integrating water management, habitat modelling and water quality at basin scale environmental flow assessment – Tormes River (Spain). Hydrol. Sci. J.-J. Sci. Hydrol., in press. [Google Scholar]
  • Poff N.L., Allan J.D., Bain M.B., Karr J.R., Prestegaard K.L., Richter B.D., Sparks R.E. and Stromberg J.C., 1997. The natural klow regime. Bioscience, 47, 769–784. [CrossRef] [Google Scholar]
  • Poff N.L., Richter B.D., Arthington A.H., Bunn S.E., Naiman R.J., Kendy E., Acreman M., Apse C., Bledsoe B.P., Freeman M.C., Henriksen J., Jacobson R.B., Kennen J.G., Merritt D.M., O’Keeffe J.H., Olden J.D., Rogers K., Tharme R.E. and Warner A., 2010. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw. Biol., 55, 147–170. [CrossRef] [Google Scholar]
  • R Development Core Team, 2009. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 409 p. [Google Scholar]
  • Reunanen J., 2003. Overfitting in making comparisons between variable selection methods. J. Mach. Learn. Res., 3, 1371–1382. [Google Scholar]
  • Reyjol Y., Hugueny B., Pont D., Bianco P.G., Beier U., Caiola N., Casals F., Cowx I., Economou A., Ferreira T., Haidvogl G., Noble R., De Sostoa A., Vigneron T. and Virbickas T., 2007. Patterns in species richness and endemism of European freshwater fish. Glob. Ecol. Biogeogr., 16, 65–75. [CrossRef] [Google Scholar]
  • Sánchez-Montoya M.M., Vidal-Abarca M.R. and Suárez M.L., 2010. Comparing the sensitivity of diverse macroinvertebrate metrics to a multiple stressor gradient in Mediterranean streams and its influence on the assessment of ecological status. Ecol. Indic., 10, 896–904. [CrossRef] [Google Scholar]
  • Singh K.P., Basant A., Malik A. and Jain G., 2009. Artificial neural network modeling of the river water quality–A case study. Ecol. Model., 220, 888–895. [CrossRef] [Google Scholar]
  • Siroky D.S., 2009. Navigating Random Forests and related advances in algorithmic modeling. Statist. Surv., 3, 147–163. [CrossRef] [Google Scholar]
  • Smith K.G. and Darwall W.R.T., 2006. The status and distribution of freshwater fish endemic to the mediterranean basin, IUCN – The World Conservation Union, Gland, Switzerland/Cambridge, UK., 41 p. [Google Scholar]
  • Strayer D.L. and Dudgeon D., 2010. Freshwater biodiversity conservation: recent progress and future challenges. J. N. Am. Benthol. Soc., 29, 344–358. [Google Scholar]
  • Tirelli T. and Pessani D., 2009. Use of decision tree and artificial neural network approaches to model presence/absence of Telestes muticellus in piedmont (North-Western Italy). River Res. Appl., 25, 1001–1012. [CrossRef] [Google Scholar]
  • Tirelli T. and Pessani D., 2011. Importance of feature selection in decision-tree and artificial-neural-network ecological applications. Alburnus alburnus alborella: A practical example. Ecol. Inform., 6, 309-315. [Google Scholar]
  • Tirelli T., Pozzi L. and Pessani D., 2009. Use of different approaches to model presence/absence of Salmo marmoratus in Piedmont (Northwestern Italy). Ecol. Inform., 4, 234–242. [CrossRef] [Google Scholar]
  • Townsend C., Begon M. and Harper J., 2008. Essentials of Ecology, 3rd edn, Wiley-Blackwell, Oxford. [Google Scholar]
  • van Jaarsveld A.S., Freitag S., Chown S.L., Muller C., Koch S., Hull H., Bellamy C., Kruger M., Endrody-Younga S., Mansell M.W. and Scholtz C.H., 1998. Biodiversity assessment and conservation strategies. Science, 279, 2106–2108. [CrossRef] [PubMed] [Google Scholar]
  • Vezza P., Comoglio C., Rosso M. and Viglione A., 2010. Low flows regionalization in North-Western Italy. Water Resour. Manag., 24, 4049–4074. [CrossRef] [Google Scholar]
  • Vezza P., Parasiewicz P., Rosso M. and Comoglio C., 2012. Defining minimum environmental flows at regional scale: application of mesoscale habitat models and catchments classification. River Res. Appl., 28, 675–792. [CrossRef] [Google Scholar]
  • Vila-Gispert A., Alcaraz C. and García-Berthou E., 2005. Life-history traits of invasive fish in small Mediterranean streams. Biol. Invasions, 7, 107-116–116. [CrossRef] [Google Scholar]
  • Vincenzi S., Zucchetta M., Franzoi P., Pellizzato M., Pranovi F., De Leo G.A. and Torricelli P., 2011. Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy. Ecol. Model., 222, 1471–1478. [CrossRef] [Google Scholar]
  • Wells B., Yu C., Koroukian S. and Kattan M., 2011. Comparison of variable selection methods for the generation of parsimonious prediction models for use in clinical practice. In: Proceedings of the 33rd Annual Meeting of the Society for Medical Decision Making, Chicago, US. [Google Scholar]
  • Xu L. and Zhang W.-J., 2001. Comparison of different methods for variable selection. Anal. Chim. Acta, 446, 475–481. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.