Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 409, 2013
Article Number 10
Number of page(s) 31
Published online 15 August 2013
  • Ackerman J.D. and Okubo A., 1993. Reduced mixing in a marine macrophyte canopy. Funct. Ecol., 7, 305–309. [CrossRef]
  • Anesio A.M., Tranvik L.J. and Granéli W., 1999. Production of inorganic carbon from aquatic macrophytes by solar radiation. Ecology, 80, 1852–1859. [CrossRef]
  • Blindow I., Hargeby A. and Andersson G., 2002. Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquat. Bot., 72, 315–334. [CrossRef]
  • Bouterfas R., Belkoura M. and Dauta A., 2002. Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake. Hydrobiologia, 489, 207–217. [CrossRef]
  • Brammer E.S., 1979: Exclusion of phytoplankton in the proximity of dominant water-soldier (Stratiotes aloides). Freshw. Biol., 9, 233–249. [CrossRef]
  • Collos Y., Vaquer A. and Souchu P., 2005. Acclimation of nitrate uptake by phytoplankton to high substrate levels. J. Phycol., 41, 466–478. [CrossRef]
  • Connell J.H., 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos, 35, 131–138. [CrossRef]
  • Connell J.H., 1983. On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat., 122, 661–696. [CrossRef]
  • Craine J.M., Fargione J. and Sugita S., 2005. Supply pre-emption, not concentration reduction, is the mechanism of competition for nutrients. New Phytol., 166, 933–940. [CrossRef] [PubMed]
  • Czeczuga B., Mazalska B., Godlewska A. and Muszyńska E., 2005. Aquatic fungi growing on dead fragments of submerged plants. Limnologica, 35, 283–297. [CrossRef]
  • Denny P., 1972. Sites of nutrient absorption in aquatic macrophytes. J. Ecol., 60, 819–829. [CrossRef]
  • Dittrich M., Müller B., Mavrocordatos D. and Wehrli B., 2003. Induced calcite precipitation by cyanobacterium Synechococcus. Acta Hydrochim. Hydrobiol., 31, 162–169. [CrossRef]
  • Duarte C.M., Kalff J. and Peters R.H., 1986. Patterns in biomass and cover of aquatic macrophytes in lakes. Can. J. Fish. Aquat. Sci., 43, 1900–1908. [CrossRef]
  • Erhard D. and Gross E.M., 2006. Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquat. Bot., 85, 203–211. [CrossRef]
  • Faafeng B.A. and Hessen D.O., 1993. Nitrogen and phosphorus concentrations and N:P ratios in Norwegian lakes: perspectives on nutrient limitation. Verh. Int. Verein. Limnol., 25, 465–469.
  • Frodge J.D., Thomas G.L. and Pauley G.B., 1990. Effects of canopy formation by floating and submergent aquatic macrophytes on the water quality of two shallow Pacific Northwest lakes. Aquat. Bot., 38, 231–248. [CrossRef]
  • Gabestad H., 2001. Restaurering av Østensjøvannet. Prosjekt “Renere Østensjøvann”, Sluttrapport med forslag til tiltak. Oslo Kommune, Vann-og Avløpsetaten. Oslo, [in Norwegian] N.
  • Gasith A. and Hoyer M.V., 1997. Structuring role of macrophytes in lakes: changing influence along lake size and depth gradients. In: Jeppesen E., Søndergaard Ma., Søndergaard Mo. and Christoffersen K. (eds.), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York, NY, 381−392.
  • Geider R.J., Osborne B.A. and Raven J.A., 1986. Growth, photosynthesis and maintenance metabolic costs in the diatom Phaeodactylum tricornutum at very low light levels. J. Phycol., 22, 39–48. [CrossRef]
  • Gligora M., Plenković-Moraj A., Kralj K., Grigorszky I. and Peroš-Pucar D., 2007. The relationship between phytoplankton species dominance and environmental variables in a shallow lake (Lake Vrana, Croatia). Hydrobiologia, 584, 337–346. [CrossRef]
  • Goldberg D.E. and Scheiner S.M., 2001. ANOVA and ANCOVA: field competition experiments. In: Scheiner S.M. and Gurevitch J. (eds.), Design and Analysis of Ecological Experiments, 2nd edn. Oxford Univ. Press, New York, NY, 77–98.
  • Goulder R., 1969. Interactions between the rates of production of a freshwater macrophyte and phytoplankton in a pond. Oikos, 20, 300–309. [CrossRef]
  • Goulder R. and Boatman D.J., 1971. Evidence that nitrogen supply influences the distribution of a freshwater macrophyte, Ceratophyllum demersum. J. Ecol., 59, 783–791. [CrossRef]
  • Gross E.M., 1995. Allelopathische Interaktionen zwischen Makrophyten und Epiphyten: Die Rolle hydrolysierbarer Polyphenole aus Myriophyllum spicatum. PhD Dissertation, University of Kiel, Kiel, D.
  • Gross E.M., 2000. Seasonal and spatial dynamics of allelochemicals in the submersed macrophyte Myriophyllum spicatum L. Verh. Int. Verein. Limnol., 27, 2116–2119.
  • Gross E.M., 2003. Differential response of tellimagrandin II and total bioactive hydrolysable tannins in an aquatic angiosperm to changes in light and nitrogen. Oikos, 103, 497–504. [CrossRef]
  • Gross E.M., Meyer H. and Schilling G., 1996. Release and ecological impact of algicidal hydrolyzable polyphenols in Myriophyllum spicatum. Phytochemistry, 41, 133–138. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Gross E.M., Erhard D. and Iványi E., 2003. Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia, 506-509, 583–589. [CrossRef]
  • Gross E.M., Hilt S., Lombardo P. and Mulderij G., 2007. Searching for allelopathic effects of submerged macrophytes on phytoplankton – state of the art and open questions. Hydrobiologia, 584, 77–88. [CrossRef]
  • Guildford S.J., Hendzel L.L., Kling H.J., Fee E.J., Robinson G.G.C., Hecky R.E. and Kasian S.E.M., 1994. Effects of lake size on phytoplankton nutrient status. Can. J. Fish. Aquat. Sci., 51, 2769–2783. [CrossRef]
  • Guiry M.D. and Guiry G.M., 2012. AlgaeBase – World-wide electronic publication, National University of Ireland, Galway, IE.; last accessed 3 July 2013.
  • Hartley A.M., House W.A., Callow M.E. and Leadbeater S.C., 1995. The role of a green alga in the precipitation of calcite and the coprecipitation of phosphate in freshwater. Int. Rev. gesamt. Hydrobiol., 80, 385–401. [CrossRef]
  • Hasler A.D. and Jones E., 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology, 30, 359–364. [CrossRef]
  • Herb W.R. and Stefan H.G., 2004. Temperature stratification and mixing dynamics in a shallow lake with submersed macrophytes. Lake Reserv. Manage., 20, 296–308. [CrossRef]
  • Hilt S., 2006. Allelopathic inhibition of epiphytes by submerged macrophytes. Aquat. Bot., 86, 252–256. [CrossRef]
  • Hilt S. and Gross E.M., 2008. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic Appl. Ecol., 9, 422–432. [CrossRef]
  • Hilt S. and Lombardo P., 2010. Effects of macrophytes on phytoplankton: nutrient uptake versus allelopathy. Verh. Int. Verein. Limnol., 30, 1317–1320.
  • Hilt S., Ghobrial M.G.N. and Gross E.M., 2006. In situ allelopathic potential of Myriophyllum verticillatum (Haloragaceae) against selected phytoplankton species. J. Phycol., 42, 1189–1198. [CrossRef]
  • Hulot F.D. and Huisman J., 2004. Allelopathic interactions between phytoplankton species: the roles of heterotrophic bacteria and mixing intensity. Limnol. Oceanogr., 49, 1424–1434. [CrossRef]
  • ISO, 2004. Water quality – Fresh water algal growth inhibition test with unicellular green algae. International Organization for Standardization, Geneva, CH.
  • Jasser I., 1995. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia, 306, 21–32. [CrossRef]
  • Jeppesen E., Jensen J.P., Kristensen P., Søndergaard M., Mortensen E., Sortkjær O. and Olrik K., 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes. 2: Threshold levels, long-term stability and conclusions. Hydrobiologia, 200/201, 219–227. [CrossRef]
  • Jones J.I., Hardwick K. and Eaton J.W., 1996. Diurnal carbon restrictions on the photosynthesis of dense stands of Elodea nuttallii (Planch.) St. John. Hydrobiologia, 340, 11–16. [CrossRef]
  • Jones J.I., Li W. and Maberly S.C., 2003. Area, altitude and aquatic plant diversity. Ecography, 26, 411–420. [CrossRef]
  • Jørgensen E.G., 1969. The adaptation of plankton algae. IV. Light adaptation in different algal species. Physiol. Plant., 22, 1307–1315. [CrossRef] [PubMed]
  • Körner S. and Nicklisch A., 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Phycol., 38, 862–871. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Lehmann A., Jacquet J.-M. and Lachavanne J.-B., 1994. Contribution of GIS to submerged macrophyte biomass estimation and community structure modeling, Lake Geneva, Switzerland. Aquat. Bot., 47, 99–117. [CrossRef]
  • Li D., Li G., Chen W. and Liu Y., 2009. Interactions between a cyanobacterial bloom (Microcystis) and the submerged aquatic plant Ceratophyllum oryzetorum Kom. Chin. J. Ocean. Limnol., 27, 38–42. [CrossRef]
  • Lombardo P., 2005. Applicability of littoral food-web biomanipulation for lake management purposes: snails, macrophytes, and water transparency in northeast Ohio shallow lakes. Lake Reserv. Manage., 21, 186–202. [CrossRef]
  • Lombardo P. and Cooke G.D., 2003. Ceratophyllum demersum – phosphorus interactions in nutrient enriched aquaria. Hydrobiologia, 497, 79–90. [CrossRef]
  • Lürling M., van Geest G. and Scheffer M., 2006. Importance of nutrient competition and allelopathic effects in suppression of the green alga Scenedesmus obliquus by the macrophytes Chara, Elodea and Myriophyllum. Hydrobiologia, 556, 209–220. [CrossRef]
  • Mjelde M. and Faafeng B.A., 1997. Ceratophyllum demersum hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus level and geographical latitude. Freshw. Biol., 37, 355–365. [CrossRef]
  • Nakai S., Inoue Y., Hosomi M. and Murakami A., 1999. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Sci. Tech., 39(8), 47–53.
  • OECD, 2011. OECD Guidelines for the Testing of Chemicals, Section 2 – Test No. 201: Freshwater Algae and Cyanobacteria, Growth Inhibition Tests. Organization for Economic Cooperation and Development, Paris, F. DOI : 10.1787/20745761. Available at; last accessed 4 July 2013.
  • Olrik K., Blomqvist P., Cronberg G., Brettum P. and Eloranta P., 1998. Methods for quantitative assessment of phytoplankton in freshwaters, part 1. Naturvårdsverkets report No. 4860.
  • Ondok J.P., Pokorný J. and Květ J., 1984. Model of diurnal changes in oxygen, carbon dioxide and bicarbonate concentrations in a stand of Elodea canadensis Michx. Aquat. Bot., 19, 293–305. [CrossRef]
  • Ozimek T. and Balcerzak D., 1976. Macrophytes. In: Pieczyńska E. (ed.), Selected Problems of Lake Littoral Ecology. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa, PL, 33–53.
  • Pehlivanoglu E. and Sedlak D.L., 2004. Bioavailability of wastewater-derived organic nitrogen to the alga Selenastrum capricornutum. Water Res., 38, 3189–3196. [CrossRef] [PubMed]
  • Pelton D.K., Levine S.N. and Braner M., 1998. Measurement of phosphorus uptake by macrophytes and epiphytes from the LaPlatte River (VT) using 32P in stream microcosms. Freshw. Biol., 39, 285–299. [CrossRef]
  • Pip E. and Philipp K., 1990. Seasonal changes in the chemical composition of Ceratophyllum demersum L. in a small pond. Int. Rev. gesamt. Hydrobiol., 75, 71–78. [CrossRef]
  • Quinn G.P. & Keough M.J., 2002. Experimental Design and Data Analysis for Biologists. Cambridge Univ. Press, Cambridge, UK.
  • Ritchie R.J., Trautman D.A. and Larkum A.W.D., 2001. Phosphate limited cultures of the cyanobacterium Synechococcus are capable of very rapid, opportunistic uptake of phosphate. New Phytol., 152, 189–201. [CrossRef]
  • Rooney N. and Kalff J., 2003. Submerged macrophyte-bed effects on water-column phosphorus, chlorophyll a, and bacterial productivity. Ecosystems, 6, 797–807. [CrossRef]
  • Rørslett B., Berge D. and Johansen S.W., 1986. Lake enrichment by submersed macrophytes: a Norwegian whole-lake experience with Elodea canadensis. Aquat. Bot., 26, 325–340. [CrossRef]
  • Sand-Jensen K. and Madsen T.V., 1991. Minimum light requirements of submerged freshwater macrophytes in laboratory growth experiments. J. Ecol., 79, 749–764. [CrossRef]
  • Scheffer M., 1998. Ecology of Shallow Lakes, reprinted with corrections 2004, Kluwer Academic Publ., Dordrecht, NL.
  • Schulz M., Rinke K. and Köhler J., 2003. A combined approach of photogrammetrical methods and field studies to determine nutrient retention by submersed macrophytes in running waters. Aquat. Bot., 76, 17–29. [CrossRef]
  • Takeda F., Shioiri M., Nomura M., Nakano K. and Nishimura O., 2008. Comparison of a novel bioassay method and previous methods for ecological impact assessment using microalgae. Environm. Engineer. Res., 45, 163–168. [In Japanese]
  • Takeda F., Nakano K., Nishimura O., Shimada Y., Fukuro S., Tanaka H., Hayashi N. and Inamori Y., 2011. Allelopathic potential of Potamogeton pusillus community against Microcystis aeruginosa. J. Water Environm. Tech., 9, 21–28. [CrossRef]
  • Tandeau de Marsac N., Lee H.M., Hisbergues M., Castets A.M. and Bédu S., 2001. Control of nitrogen and carbon metabolism in cyanobacteria. J. Appl. Phycol., 13, 287–292. [CrossRef]
  • Thiébaut G., 2005. Does competition for phosphate supply explain the invasion pattern of Elodea species? Water Res., 39, 3385–3393. [CrossRef] [PubMed]
  • Touchette B.W. and Burkholder J.M., 2001. Nitrate reductase activity in a submersed marine angiosperm: controlling influences of environmental and physiological factors. Plant Physiol. Biochem., 39, 583–593. [CrossRef]
  • van Donk E., Gulati R.D., Iedema A. and Meulemans J.T., 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different tophic levels in a biomanipulated shallow lake. Hydrobiologia, 251, 19–26. [CrossRef]
  • van Geest G.J.F., Roozen C.J.M., Coops H., Roijackers R.M.M., Buijse A.D., Peeters E.T.H.M. and Scheffer M., 2003. Vegetation abundance in lowland flood plain lakes determined by surface area, age and connectivity. Freshw. Biol., 48, 440–454. [CrossRef]
  • Vermaat J.E., Santamaría L. and Roos P.J., 2000. Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Arch. Hydrobiol., 148, 549–562.
  • Wetzel R.G., 2001. Limnology – Lake and River Ecosystems, 3rd ed., Academic Press, San Diego, CA.
  • Whittaker R.H., 1952. A study of summer foliage insect communities in the Great Smoky Mountains. Ecol. Monogr., 22, 1–44. [CrossRef]
  • Wium-Andersen S., 1987. Allelopathy among aquatic plants. Arch. Hydrobiol. Beih. Ergeb. Limnol., 27, 167–172.
  • Wurster M., Mundt S., Hammer E., Schauer F. and Lindequist U., 2003. Extracellular degradation of phenol by the cyanobacterium Synechococcus PCC 7002. J. Appl. Phycol., 15, 171–176. [CrossRef]
  • Zar J.H., 2009. Biostatistical Analysis, 5th edn. Pearson / Prentice Hall, Upper Saddle River, NJ.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.