Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 409, 2013
Article Number 10
Number of page(s) 31
Published online 15 August 2013
  • Ackerman J.D. and Okubo A., 1993. Reduced mixing in a marine macrophyte canopy. Funct. Ecol., 7, 305–309. [CrossRef] [Google Scholar]
  • Anesio A.M., Tranvik L.J. and Granéli W., 1999. Production of inorganic carbon from aquatic macrophytes by solar radiation. Ecology, 80, 1852–1859. [CrossRef] [Google Scholar]
  • Blindow I., Hargeby A. and Andersson G., 2002. Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquat. Bot., 72, 315–334. [CrossRef] [Google Scholar]
  • Bouterfas R., Belkoura M. and Dauta A., 2002. Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake. Hydrobiologia, 489, 207–217. [CrossRef] [Google Scholar]
  • Brammer E.S., 1979: Exclusion of phytoplankton in the proximity of dominant water-soldier (Stratiotes aloides). Freshw. Biol., 9, 233–249. [CrossRef] [Google Scholar]
  • Collos Y., Vaquer A. and Souchu P., 2005. Acclimation of nitrate uptake by phytoplankton to high substrate levels. J. Phycol., 41, 466–478. [CrossRef] [Google Scholar]
  • Connell J.H., 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos, 35, 131–138. [CrossRef] [Google Scholar]
  • Connell J.H., 1983. On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat., 122, 661–696. [CrossRef] [Google Scholar]
  • Craine J.M., Fargione J. and Sugita S., 2005. Supply pre-emption, not concentration reduction, is the mechanism of competition for nutrients. New Phytol., 166, 933–940. [CrossRef] [PubMed] [Google Scholar]
  • Czeczuga B., Mazalska B., Godlewska A. and Muszyńska E., 2005. Aquatic fungi growing on dead fragments of submerged plants. Limnologica, 35, 283–297. [CrossRef] [Google Scholar]
  • Denny P., 1972. Sites of nutrient absorption in aquatic macrophytes. J. Ecol., 60, 819–829. [CrossRef] [Google Scholar]
  • Dittrich M., Müller B., Mavrocordatos D. and Wehrli B., 2003. Induced calcite precipitation by cyanobacterium Synechococcus. Acta Hydrochim. Hydrobiol., 31, 162–169. [CrossRef] [Google Scholar]
  • Duarte C.M., Kalff J. and Peters R.H., 1986. Patterns in biomass and cover of aquatic macrophytes in lakes. Can. J. Fish. Aquat. Sci., 43, 1900–1908. [CrossRef] [Google Scholar]
  • Erhard D. and Gross E.M., 2006. Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquat. Bot., 85, 203–211. [Google Scholar]
  • Faafeng B.A. and Hessen D.O., 1993. Nitrogen and phosphorus concentrations and N:P ratios in Norwegian lakes: perspectives on nutrient limitation. Verh. Int. Verein. Limnol., 25, 465–469. [Google Scholar]
  • Frodge J.D., Thomas G.L. and Pauley G.B., 1990. Effects of canopy formation by floating and submergent aquatic macrophytes on the water quality of two shallow Pacific Northwest lakes. Aquat. Bot., 38, 231–248. [CrossRef] [Google Scholar]
  • Gabestad H., 2001. Restaurering av Østensjøvannet. Prosjekt “Renere Østensjøvann”, Sluttrapport med forslag til tiltak. Oslo Kommune, Vann-og Avløpsetaten. Oslo, [in Norwegian] N. [Google Scholar]
  • Gasith A. and Hoyer M.V., 1997. Structuring role of macrophytes in lakes: changing influence along lake size and depth gradients. In: Jeppesen E., Søndergaard Ma., Søndergaard Mo. and Christoffersen K. (eds.), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York, NY, 381−392. [Google Scholar]
  • Geider R.J., Osborne B.A. and Raven J.A., 1986. Growth, photosynthesis and maintenance metabolic costs in the diatom Phaeodactylum tricornutum at very low light levels. J. Phycol., 22, 39–48. [CrossRef] [Google Scholar]
  • Gligora M., Plenković-Moraj A., Kralj K., Grigorszky I. and Peroš-Pucar D., 2007. The relationship between phytoplankton species dominance and environmental variables in a shallow lake (Lake Vrana, Croatia). Hydrobiologia, 584, 337–346. [CrossRef] [Google Scholar]
  • Goldberg D.E. and Scheiner S.M., 2001. ANOVA and ANCOVA: field competition experiments. In: Scheiner S.M. and Gurevitch J. (eds.), Design and Analysis of Ecological Experiments, 2nd edn. Oxford Univ. Press, New York, NY, 77–98. [Google Scholar]
  • Goulder R., 1969. Interactions between the rates of production of a freshwater macrophyte and phytoplankton in a pond. Oikos, 20, 300–309. [CrossRef] [Google Scholar]
  • Goulder R. and Boatman D.J., 1971. Evidence that nitrogen supply influences the distribution of a freshwater macrophyte, Ceratophyllum demersum. J. Ecol., 59, 783–791. [CrossRef] [Google Scholar]
  • Gross E.M., 1995. Allelopathische Interaktionen zwischen Makrophyten und Epiphyten: Die Rolle hydrolysierbarer Polyphenole aus Myriophyllum spicatum. PhD Dissertation, University of Kiel, Kiel, D. [Google Scholar]
  • Gross E.M., 2000. Seasonal and spatial dynamics of allelochemicals in the submersed macrophyte Myriophyllum spicatum L. Verh. Int. Verein. Limnol., 27, 2116–2119. [Google Scholar]
  • Gross E.M., 2003. Differential response of tellimagrandin II and total bioactive hydrolysable tannins in an aquatic angiosperm to changes in light and nitrogen. Oikos, 103, 497–504. [CrossRef] [Google Scholar]
  • Gross E.M., Meyer H. and Schilling G., 1996. Release and ecological impact of algicidal hydrolyzable polyphenols in Myriophyllum spicatum. Phytochemistry, 41, 133–138. [CrossRef] [Google Scholar]
  • Gross E.M., Erhard D. and Iványi E., 2003. Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia, 506-509, 583–589. [CrossRef] [Google Scholar]
  • Gross E.M., Hilt S., Lombardo P. and Mulderij G., 2007. Searching for allelopathic effects of submerged macrophytes on phytoplankton – state of the art and open questions. Hydrobiologia, 584, 77–88. [CrossRef] [Google Scholar]
  • Guildford S.J., Hendzel L.L., Kling H.J., Fee E.J., Robinson G.G.C., Hecky R.E. and Kasian S.E.M., 1994. Effects of lake size on phytoplankton nutrient status. Can. J. Fish. Aquat. Sci., 51, 2769–2783. [CrossRef] [Google Scholar]
  • Guiry M.D. and Guiry G.M., 2012. AlgaeBase – World-wide electronic publication, National University of Ireland, Galway, IE.; last accessed 3 July 2013. [Google Scholar]
  • Hartley A.M., House W.A., Callow M.E. and Leadbeater S.C., 1995. The role of a green alga in the precipitation of calcite and the coprecipitation of phosphate in freshwater. Int. Rev. gesamt. Hydrobiol., 80, 385–401. [CrossRef] [Google Scholar]
  • Hasler A.D. and Jones E., 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology, 30, 359–364. [CrossRef] [Google Scholar]
  • Herb W.R. and Stefan H.G., 2004. Temperature stratification and mixing dynamics in a shallow lake with submersed macrophytes. Lake Reserv. Manage., 20, 296–308. [CrossRef] [Google Scholar]
  • Hilt S., 2006. Allelopathic inhibition of epiphytes by submerged macrophytes. Aquat. Bot., 86, 252–256. [CrossRef] [Google Scholar]
  • Hilt S. and Gross E.M., 2008. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic Appl. Ecol., 9, 422–432. [Google Scholar]
  • Hilt S. and Lombardo P., 2010. Effects of macrophytes on phytoplankton: nutrient uptake versus allelopathy. Verh. Int. Verein. Limnol., 30, 1317–1320. [Google Scholar]
  • Hilt S., Ghobrial M.G.N. and Gross E.M., 2006. In situ allelopathic potential of Myriophyllum verticillatum (Haloragaceae) against selected phytoplankton species. J. Phycol., 42, 1189–1198. [CrossRef] [Google Scholar]
  • Hulot F.D. and Huisman J., 2004. Allelopathic interactions between phytoplankton species: the roles of heterotrophic bacteria and mixing intensity. Limnol. Oceanogr., 49, 1424–1434. [CrossRef] [Google Scholar]
  • ISO, 2004. Water quality – Fresh water algal growth inhibition test with unicellular green algae. International Organization for Standardization, Geneva, CH. [Google Scholar]
  • Jasser I., 1995. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia, 306, 21–32. [CrossRef] [Google Scholar]
  • Jeppesen E., Jensen J.P., Kristensen P., Søndergaard M., Mortensen E., Sortkjær O. and Olrik K., 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes. 2: Threshold levels, long-term stability and conclusions. Hydrobiologia, 200/201, 219–227. [CrossRef] [Google Scholar]
  • Jones J.I., Hardwick K. and Eaton J.W., 1996. Diurnal carbon restrictions on the photosynthesis of dense stands of Elodea nuttallii (Planch.) St. John. Hydrobiologia, 340, 11–16. [CrossRef] [Google Scholar]
  • Jones J.I., Li W. and Maberly S.C., 2003. Area, altitude and aquatic plant diversity. Ecography, 26, 411–420. [CrossRef] [Google Scholar]
  • Jørgensen E.G., 1969. The adaptation of plankton algae. IV. Light adaptation in different algal species. Physiol. Plant., 22, 1307–1315. [CrossRef] [PubMed] [Google Scholar]
  • Körner S. and Nicklisch A., 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Phycol., 38, 862–871. [Google Scholar]
  • Lehmann A., Jacquet J.-M. and Lachavanne J.-B., 1994. Contribution of GIS to submerged macrophyte biomass estimation and community structure modeling, Lake Geneva, Switzerland. Aquat. Bot., 47, 99–117. [CrossRef] [Google Scholar]
  • Li D., Li G., Chen W. and Liu Y., 2009. Interactions between a cyanobacterial bloom (Microcystis) and the submerged aquatic plant Ceratophyllum oryzetorum Kom. Chin. J. Ocean. Limnol., 27, 38–42. [CrossRef] [Google Scholar]
  • Lombardo P., 2005. Applicability of littoral food-web biomanipulation for lake management purposes: snails, macrophytes, and water transparency in northeast Ohio shallow lakes. Lake Reserv. Manage., 21, 186–202. [Google Scholar]
  • Lombardo P. and Cooke G.D., 2003. Ceratophyllum demersum – phosphorus interactions in nutrient enriched aquaria. Hydrobiologia, 497, 79–90. [CrossRef] [Google Scholar]
  • Lürling M., van Geest G. and Scheffer M., 2006. Importance of nutrient competition and allelopathic effects in suppression of the green alga Scenedesmus obliquus by the macrophytes Chara, Elodea and Myriophyllum. Hydrobiologia, 556, 209–220. [CrossRef] [Google Scholar]
  • Mjelde M. and Faafeng B.A., 1997. Ceratophyllum demersum hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus level and geographical latitude. Freshw. Biol., 37, 355–365. [CrossRef] [Google Scholar]
  • Nakai S., Inoue Y., Hosomi M. and Murakami A., 1999. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Sci. Tech., 39(8), 47–53. [Google Scholar]
  • OECD, 2011. OECD Guidelines for the Testing of Chemicals, Section 2 – Test No. 201: Freshwater Algae and Cyanobacteria, Growth Inhibition Tests. Organization for Economic Cooperation and Development, Paris, F. DOI : 10.1787/20745761. Available at; last accessed 4 July 2013. [Google Scholar]
  • Olrik K., Blomqvist P., Cronberg G., Brettum P. and Eloranta P., 1998. Methods for quantitative assessment of phytoplankton in freshwaters, part 1. Naturvårdsverkets report No. 4860. [Google Scholar]
  • Ondok J.P., Pokorný J. and Květ J., 1984. Model of diurnal changes in oxygen, carbon dioxide and bicarbonate concentrations in a stand of Elodea canadensis Michx. Aquat. Bot., 19, 293–305. [CrossRef] [Google Scholar]
  • Ozimek T. and Balcerzak D., 1976. Macrophytes. In: Pieczyńska E. (ed.), Selected Problems of Lake Littoral Ecology. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa, PL, 33–53. [Google Scholar]
  • Pehlivanoglu E. and Sedlak D.L., 2004. Bioavailability of wastewater-derived organic nitrogen to the alga Selenastrum capricornutum. Water Res., 38, 3189–3196. [CrossRef] [PubMed] [Google Scholar]
  • Pelton D.K., Levine S.N. and Braner M., 1998. Measurement of phosphorus uptake by macrophytes and epiphytes from the LaPlatte River (VT) using 32P in stream microcosms. Freshw. Biol., 39, 285–299. [CrossRef] [Google Scholar]
  • Pip E. and Philipp K., 1990. Seasonal changes in the chemical composition of Ceratophyllum demersum L. in a small pond. Int. Rev. gesamt. Hydrobiol., 75, 71–78. [CrossRef] [Google Scholar]
  • Quinn G.P. & Keough M.J., 2002. Experimental Design and Data Analysis for Biologists. Cambridge Univ. Press, Cambridge, UK. [Google Scholar]
  • Ritchie R.J., Trautman D.A. and Larkum A.W.D., 2001. Phosphate limited cultures of the cyanobacterium Synechococcus are capable of very rapid, opportunistic uptake of phosphate. New Phytol., 152, 189–201. [CrossRef] [Google Scholar]
  • Rooney N. and Kalff J., 2003. Submerged macrophyte-bed effects on water-column phosphorus, chlorophyll a, and bacterial productivity. Ecosystems, 6, 797–807. [CrossRef] [Google Scholar]
  • Rørslett B., Berge D. and Johansen S.W., 1986. Lake enrichment by submersed macrophytes: a Norwegian whole-lake experience with Elodea canadensis. Aquat. Bot., 26, 325–340. [CrossRef] [Google Scholar]
  • Sand-Jensen K. and Madsen T.V., 1991. Minimum light requirements of submerged freshwater macrophytes in laboratory growth experiments. J. Ecol., 79, 749–764. [CrossRef] [Google Scholar]
  • Scheffer M., 1998. Ecology of Shallow Lakes, reprinted with corrections 2004, Kluwer Academic Publ., Dordrecht, NL. [Google Scholar]
  • Schulz M., Rinke K. and Köhler J., 2003. A combined approach of photogrammetrical methods and field studies to determine nutrient retention by submersed macrophytes in running waters. Aquat. Bot., 76, 17–29. [CrossRef] [Google Scholar]
  • Takeda F., Shioiri M., Nomura M., Nakano K. and Nishimura O., 2008. Comparison of a novel bioassay method and previous methods for ecological impact assessment using microalgae. Environm. Engineer. Res., 45, 163–168. [In Japanese] [Google Scholar]
  • Takeda F., Nakano K., Nishimura O., Shimada Y., Fukuro S., Tanaka H., Hayashi N. and Inamori Y., 2011. Allelopathic potential of Potamogeton pusillus community against Microcystis aeruginosa. J. Water Environm. Tech., 9, 21–28. [CrossRef] [Google Scholar]
  • Tandeau de Marsac N., Lee H.M., Hisbergues M., Castets A.M. and Bédu S., 2001. Control of nitrogen and carbon metabolism in cyanobacteria. J. Appl. Phycol., 13, 287–292. [CrossRef] [Google Scholar]
  • Thiébaut G., 2005. Does competition for phosphate supply explain the invasion pattern of Elodea species? Water Res., 39, 3385–3393. [CrossRef] [PubMed] [Google Scholar]
  • Touchette B.W. and Burkholder J.M., 2001. Nitrate reductase activity in a submersed marine angiosperm: controlling influences of environmental and physiological factors. Plant Physiol. Biochem., 39, 583–593. [CrossRef] [Google Scholar]
  • van Donk E., Gulati R.D., Iedema A. and Meulemans J.T., 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different tophic levels in a biomanipulated shallow lake. Hydrobiologia, 251, 19–26. [CrossRef] [Google Scholar]
  • van Geest G.J.F., Roozen C.J.M., Coops H., Roijackers R.M.M., Buijse A.D., Peeters E.T.H.M. and Scheffer M., 2003. Vegetation abundance in lowland flood plain lakes determined by surface area, age and connectivity. Freshw. Biol., 48, 440–454. [CrossRef] [Google Scholar]
  • Vermaat J.E., Santamaría L. and Roos P.J., 2000. Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Arch. Hydrobiol., 148, 549–562. [Google Scholar]
  • Wetzel R.G., 2001. Limnology – Lake and River Ecosystems, 3rd ed., Academic Press, San Diego, CA. [Google Scholar]
  • Whittaker R.H., 1952. A study of summer foliage insect communities in the Great Smoky Mountains. Ecol. Monogr., 22, 1–44. [CrossRef] [Google Scholar]
  • Wium-Andersen S., 1987. Allelopathy among aquatic plants. Arch. Hydrobiol. Beih. Ergeb. Limnol., 27, 167–172. [Google Scholar]
  • Wurster M., Mundt S., Hammer E., Schauer F. and Lindequist U., 2003. Extracellular degradation of phenol by the cyanobacterium Synechococcus PCC 7002. J. Appl. Phycol., 15, 171–176. [CrossRef] [Google Scholar]
  • Zar J.H., 2009. Biostatistical Analysis, 5th edn. Pearson / Prentice Hall, Upper Saddle River, NJ. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.