Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 409, 2013
Article Number 09
Number of page(s) 18
Published online 05 August 2013
  • Abernethy D.L., 2006. An angler’s guide to interpreting Alabama wildlife and freshwater fisheries reservoir reports. Department of Conservation and Natural Resources, Wildlife and Freshwater Fisheries Division, Fisheries Section, Alabama USA. [Google Scholar]
  • Britton J.R. and Pegg J., 2011. Ecology of European barbel Barbus barbus: implications for river, fishery, and conservation management. Rev. Fish. Sci., 19, 321–330. [CrossRef] [Google Scholar]
  • Britton J.R., Davies G.D. and Pegg J., 2012. Spatial variation in the somatic growth rates of European barbel Barbus barbus: a UK perspective. Ecol. Freshwat. Fish, 22, 21–29. [Google Scholar]
  • Burnham K.P. and Anderson D.R., 2003. Model selection and multimodel inference. a practical information-theoretic approach. New York, Springer. [Google Scholar]
  • Campana S.E., 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish Biol., 9, 197–242. [Google Scholar]
  • Campana S.E., Annand M.C. and McMillan J.I., 1995. Graphical and statistical methods for determining the consistency of age determinations. Trans. Am. Fish. Soc., 124, 131–138. [Google Scholar]
  • Cattanéo F., 2005. Does hydrology constrain the structure of fish assemblages in French streams? Local scale analysis. Arch. Hydrobiol., 164, 345–365. [Google Scholar]
  • Charman D.J., 2010. Centennial climate variability in the British Isles during the mid-late Holocene. Quater. Sci. Rev., 29, 1539–1554. [CrossRef] [Google Scholar]
  • Charnov E.L., 2010. Comparing body-size growth curves: the Gallucci-Quinn index, and beyond. Environ. Biol. Fish., 88, 293–294. [CrossRef] [Google Scholar]
  • Chugunova N.I., 1963. Age and growth studies in fish. Office of Technological Services, Washington, D.C. [Google Scholar]
  • Clarke K.R. and Gorley RN., 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E Ltd, Plymouth, UK. [Google Scholar]
  • Copp G.H. and Bennetts T.A., 1996. Short-term effects of removing riparian and instream cover on barbel (Barbus barbus) and other fish populations in a stretch of English chalk stream. Folia Zool., 45, 283–288. [Google Scholar]
  • Copp G.H., Doherty S., Faulkner H., Watkins M.S. and Majecki J., 2002. Diel drift behaviour of fish eggs and larvae, in particular barbel, Barbus barbus (L.), in an English chalk stream. Fish. Manag. Ecol., 9, 95–104. [CrossRef] [Google Scholar]
  • Copp G.H., Fox M.G., Przybylski M., Godinho F. and Vila-Gispert A., 2004. Life-time growth patterns of pumpkinseed Lepomis gibbosus introduced to Europe relative to native North American populations. Folia Zool., 53, 237–254. [Google Scholar]
  • Copp G.H., Spathari S. and Turmel M., 2005. Consistency of diel behaviour and interactions of stream fishes and invertebrates during summer. Riv. Res. Appl., 21, 75–90. [Google Scholar]
  • Copp G.H., England J., Tyner R., Carter M.G., Przybylski M. and Wesley K.J., 2007. Growth and condition of dace Leuciscus leuciscus in the River Lee (Hertfordshire) relative to selected populations elsewhere in Europe. London Nat., 86, 71–85. [Google Scholar]
  • Edmonds-Brown V., Copp G.H. and Majecki J., 2004. Diel patterns of drift by macroinvertebrates in the River Lee (Hertfordshire) during low discharge. London Nat., 83, 145–157. [Google Scholar]
  • Faulkner H. and Copp G.H., 2001. A model for accurate drift estimation in streams. Freshwater Biol., 46, 723–733. [CrossRef] [Google Scholar]
  • Gabelhouse D.W., 1984. A length-categorization system to assess fish stocks. North Am. J. Fish. Manage. 4, 273–285. [Google Scholar]
  • Hoenig J.M., Morgan M.J. and Brown C.A., 1995. Analysing differences between two age determination methods by tests of symmetry. Can. J. Fish. Aquat. Sci., 52, 364–368. [CrossRef] [Google Scholar]
  • Huet M., 1949. Aperçu de la relation entre la pente et les populations piscicoles des eaux courantes. Schweiz. Z. Hydrol., 11, 332–351. [Google Scholar]
  • Hunt P.C. and Jones J.W., 1975. A population study of Barbus barbus L. in the River Severn, England. III. Growth. J. Fish. Biol., 7, 361–376. [CrossRef] [Google Scholar]
  • Lucas M.C. and Frear P.A., 1997. Effects of a flow-gauging weir on the migratory behaviour of adult barbel, a riverine cyprinid. J. Fish Biol., 50, 382–396. [CrossRef] [Google Scholar]
  • NRA, 1994a. Upper Lee catchment management plan: Final plan. National Rivers Authority, Thames Region, Reading, UK [Google Scholar]
  • NRA, 1994b. Implementation of the Freshwater Fish Directive: water quality requirements for the support of fish life. National Rivers Authority, Rivers House, Waterside Drive, Aztec West, Almondsbury, Bristol, England. [Google Scholar]
  • Ogle D., 2011a. FishR vignette – Size structure analysis. Northland College, Wisconsin, USA, 16 p., [Google Scholar]
  • Ogle D., 2011b. FishR vignette – Precision and accuracy in ages. Northland College, Wisconsin, USA, 11 p., [Google Scholar]
  • Ogle D., 2011c. FishR vignette – Length-weight relationships. Northland College, Wisconsin, USA, 12 p., [Google Scholar]
  • Ogle D., 2011d. FishR vignette – Size structure analysis. Northland College, Wisconsin, USA, 54 p., [Google Scholar]
  • Pegg J. and Britton J.R., 2011. Effects of inter- and intra-specific competition on the growth rates of juvenile European barbel Barbus barbus used in the stock enhancement of UK fisheries. Fish. Res., 112, 8–12. [CrossRef] [Google Scholar]
  • Peňáz M. and Štouračová I., 1991. Effect of hydroelectric development on population dynamics of Barbus barbus in the River Jihlava. Folia Zool., 40, 75–84. [Google Scholar]
  • Peňáz M., Pivnička K., Baruš V. and Prokeš M., 2003. Temporal changes in the abundance of barbel, Barbus barbus in the Jihlava River, Czech Republic. Folia Zool., 52, 441–448. [Google Scholar]
  • Peňáz M., Svobodová Z., Baruš V., Prokeš M. and Drastichová J., 2005. Endocrine disruption in a barbel, Barbus barbus population from River Jihlava, Czech Republic. J. Appl. Ichthyol., 21, 420–428. [CrossRef] [Google Scholar]
  • Persat H. and Chessel D., 1989. Typologie de distributions en classes de taille: intérêt dans l’étude des populations de poissons et d’invertébrés. Acta Œcol., Œcol. Gen., 10, 175–195. [Google Scholar]
  • Pilcher M. and Copp G.H., 1997. Winter distribution and habitat use of fish in a regulated lowland river system of South-East England. Fish. Manag. Ecol., 4, 199–215. [CrossRef] [Google Scholar]
  • Pilcher M., Copp G.H. and Szomolai V., 2004. A comparison of adjacent natural and channelised stretches of a lowland river. Biologia-Bratislava, 59, 669–673. [Google Scholar]
  • Prokeš M., Šovčík P., Peňáz M., Baruš V., Spurný P. and Vilizzi L., 2006. Growth of the barbel, Barbus barbus, in the River Jihlava following major habitat alteration and estimated by two methods. Folia Zool., 55, 86–96. [Google Scholar]
  • Przybylski M., Boroń A. and Kruk A., 2004. Growth of barbel, Barbus barbus (L.) in the upper Warta River, Odra River system. Ecohydrol. Hydrobiol. 2, 183–190. [Google Scholar]
  • R Development Core Team, 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Google Scholar]
  • Ricker W.E., 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can., 191. [Google Scholar]
  • Taylor A.A.L., Britton J.R. and Cowx I.G., 2004. Does the stock density of stillwater catch and release fisheries affect the growth performance of introduced cultured barbel? J. Fish Biol., 65 (Suppl. A), 308–313. [CrossRef] [Google Scholar]
  • Tyler C.R. and Everett F., 1993. Incidences of gross morphological disorders in barbel (Barbus barbus) in three rivers in southern England. J. Fish Biol., 43, 739–748. [CrossRef] [Google Scholar]
  • Vilizzi L. and Copp G.H., 2001. Behavioural responses of 0+ barbel in an artificial stream: distribution and velocity use. Animal Behav., 61, 645–654. [CrossRef] [Google Scholar]
  • Vilizzi L. and Copp G.H., 2013a. Interstitial movement and emergence of barbel, Barbus barbus, free embryos and larvae in a laboratory flume. J. Fish Biol., 82, 1057–1063. [CrossRef] [PubMed] [Google Scholar]
  • Vilizzi L. and Copp G.H., 2013b. Bias, precision and validation of ageing 0+ European barbel Barbus barbus (L.) from their otoliths. Cent. Eur. J. Biol. 8, 654–661. [CrossRef] [Google Scholar]
  • Vilizzi L. and Walker K., 1999. Age and growth of the common carp, Cyprinus carpio, in the River Murray, Australia: validation, consistency of age interpretation, and growth models. Environ. Biol. Fish., 54, 77–106. [CrossRef] [Google Scholar]
  • Vilizzi L., Walker K.F., Jain T., McGlennon D. and Tsymbal V., 1998. Interpretability and precision of annulus counts for calcified structures in carp, Cyprinus carpio L. Archiv Hydrobiol., 143, 121–127. [Google Scholar]
  • Vilizzi L., Copp G.H., Peňáz M. and Carter M.G., 2006. Movement and abundance of barbel Barbus barbus in a mesotrophic chalk stream: the River Lee, England. Folia Zool., 55, 183–197. [Google Scholar]
  • Watkins M.S., Doherty S. and Copp G.H., 1997. Microhabitat use by 0+ and older fishes in a small English chalk stream. J. Fish Biol., 50, 1010–1024. [CrossRef] [Google Scholar]
  • Wheeler A. and Jordan D.R., 1990: The status of the barbel, Barbus barbus (L.) (Teleostei, cyprinidae), in the United Kingdom. J. Fish Biol., 37, 393–399. [CrossRef] [Google Scholar]
  • Živkov M.T., Trichkova T.A. and Raikova-Petrova G.N., 1999. Biological reasons for the unsuitability of growth parameters and indices for comparing fish growth. Environ. Biol. Fish., 54, 67–76. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.