Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 407, 2012
Article Number 08
Number of page(s) 12
Published online 05 March 2013
  • Abrahamsson S. and Goldman C.R., 1970. Distribution, density and production of the crayfish, Pacifastacus leniusculus Dana in Lake Tahoe, California – Nevada. Oikos. 21, 83–91. [CrossRef]
  • Babler A.L., Pilati A. and Vanni M.J., 2011. Terrestrial support of detrivorous fish populations decreases with watershed size. Ecosphere, 2, art76. [CrossRef]
  • Bubb D.Thom T.T. and Lucas M.C., 2006. Movement patterns of the invasive signal crayfish determined by PIT telemetry. Can. J. Zool., 84, 1202–1209. [CrossRef]
  • Byron C.J. and Wilson K.A., 2001. Rusty crayfish (Orconectes rusticus) movement within and between habitats in Trout Lake, Vilas County, Wisconsin. J. N. Am. Benthol. Soc., 20, 606–614. [CrossRef]
  • Covich A.P., Palmer M.A. and Crowl T.A., 1999. The role of benthic invertebrate species in freshwater ecosystems. Bioscience, 46, 119–126. [CrossRef]
  • Davis M.A., 2010. Invasion Biology. Oxford University Press, New York, p. 244.
  • Dolson R., McCann K., Rooney N. and Ridgway M., 2009. Lake morphometry predicts the degree of habitat coupling by a mobile predator. Oikos, 118, 1230–1238. [CrossRef]
  • Dorn N.J. and Wojdak J.M., 2004. The role of omnivorous crayfish in littoral communities. Oecologia, 140, 150–159. [CrossRef] [PubMed]
  • Eby L.A., Roach W.J., Crowder L.B. and Stanford J.A., 2006. Effects of stocking-up freshwater food webs. Trends Ecol. Evol., 21, 576–584. [CrossRef] [PubMed]
  • Erkamo E., Ruokonen T., Alapassi T., Ruokolainen J., Järvenpää T., Tulonen J. and Kirjavainen J., 2010. Evaluation of crayfish stocking success in Finland. Freshwater Crayfish, 17, 77–83.
  • Flint W., 1977. Seasonal activity, migration and distribution of the crayfish, Pacifastacus leniusculus, in Lake Tahoe. Am. Mid. Nat., 97, 208–292.
  • Francis T.B., Schindler D.E., Holtgrieve G.W., Larson E.R., Scheuerell M.D., Semmens B.X. and Ward E.J., 2011. Habitat structure determines resource use by zooplankton in temperate lakes. Ecol. Lett. 14, 364–372. [CrossRef] [PubMed]
  • Fry B., 2006. Stable isotope ecology. Springer Science and Business Media, New York, p. 308.
  • Gasith A. and Hasler A.D., 1976. Airborne litterfall as a source of organic matter in lakes. Limnol. Oceanog., 21, 253–258. [CrossRef]
  • Grey J. and Jackson M., 2012. ‘Leaves and shoots’: Direct terrestrial feeding can supplement invasive red swamp crayfish in times of need. PLoS ONE, 7, e42575. [CrossRef] [PubMed]
  • Hobson K.A., Wassenaar L.I., Mila B., Lovette I., Dingle C. and Smith T.B., 2003. Stable isotopes as indicators of altitudinal distributions and movements of an Ecuadorean hummingbird community. Oecologia, 136, 302–308. [CrossRef] [PubMed]
  • Holdich D.M., Reynolds J.D., Souty-Grosset C. and Sibley P.J., 2009. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Managt. Aquatic Ecosyst., 11, 394–395.
  • Jackson A.L., Inger R., Parnell A.C. and Bearhop S., 2011. Comparing isotopic niche widths amog and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol., 8, 595–602. [CrossRef] [PubMed]
  • Jansson M., Persson L., De Roos A.M., Jones R.I. and Tranvik L.J., 2007. Terrestrial carbon and intraspecific size variation shape lake ecosystems. Trends Ecol. Evol., 22, 316–322. [CrossRef] [PubMed]
  • Kirjavainen J. and Sipponen M., 2004. Environmental benefit of different crayfish management strategies in Finland. Fish. Manag. Ecol., 11, 213–218. [CrossRef]
  • Larson E.R., Olden J.D. and Usio N., 2011. Shoreline urbanization interrupts allochthonous subsidies to a benthic consumer over a gradient of lake size. Biol. Lett., doi: 10.1098/rsbl.2011.0089.
  • Layman C.A., Arrington D.A., Montana C.G. and Post D.M., 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology, 88, 42–48. [CrossRef] [PubMed]
  • Layman C.A., Araujo M.S., Boucek R., Hammerschlag-Peyer C.M., Harrison E., Jud Z.R., Matich P., Rosenblatt A.E., Vaudo J.J., Yeager L.A., Post D.M. and Bearhop S. 2012. Biol. Rev., 87, 545–562. [CrossRef]
  • McCarthy J.M., Hein C., Olden J.D. and Vander Zanden M.J., 2006. Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. Freshw. Biol., 51, 224–235. [CrossRef]
  • McCutchan J.H. Jr, Lewis W.M., Kendall C. and McGrath C.C., 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and suphur. Oikos, 102, 378–390. [CrossRef]
  • Momot W.T. and Gowing H., 1972. Differential seasonal migration of the crayfish Orconectes virilis (Hagen), in Marl lakes. Ecology, 53, 479–483. [CrossRef]
  • Montemarano J.J., Kershner M.W. and Leff L.G., 2007. Crayfish effects on fine particulate organic matter quality and quantity. Fund. Appl. Limnol., 169, 223–229. [CrossRef]
  • Nakano S. and Murakami M., 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci., 98, 166–170. [CrossRef]
  • Parnell A.C., Inger R., Bearhop S. and Jackson A.L., 2010. Source Partitioning Using Stable Isotopes: Coping with Too Much Variation. PLoS ONE, 5, e9672. [CrossRef] [PubMed]
  • Peterson B.J. and Fry B., 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 18, 292–320. [CrossRef] [EDP Sciences]
  • Post D., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83, 703–718. [CrossRef]
  • Quevedo M., Svanbäck R. and Eklöv P., 2009. Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology, 90, 2263–2274. [CrossRef] [PubMed]
  • R Development Core Team, 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
  • Rodriguez C.F., Becares E., Fernandez-Alaez M. and Fernandez-Alaez C., 2005. Loss of diversity and degradation of wetlands as a result of introducing exotic crayfish. Biol. Inv., 7, 75–85. [CrossRef]
  • Rubenstein D.R. and Hobson K.A., 2004. From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol. Evol., 19, 256–263. [CrossRef] [PubMed]
  • Ruokonen T.J., Karjalainen J., Kiljunen, Pursiainen M. and Hämäläinen H., 2012. Do introduced crayfish affect benthic fish in stony littoral habitats of large boreal lakes? Biol. Inv., 14, 813–825. [CrossRef]
  • Schindler D.E. and Scheuerell M.D., 2002. Habitat coupling in lake ecosystems. Oikos, 98, 177–189. [CrossRef]
  • Schofield K.A., Pringle C.M., Meyer J. L. and Sutherland A.B., 2001. The importance of crayfish in the breakdown of rhododendron leaf litter. Freshw. Biol., 46, 1191–1204. [CrossRef]
  • Solomon C.T., Carpenter S.R., Clayton M.K., Cole J.J., Coloso J.J., Pace M.L., Van der Zanden M.J. and Weidel B.C., 2011. Terrestrial, benthic and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology, 92, 1115–1125. [CrossRef] [PubMed]
  • Stendera S. and Johnson R.K., 2008. Habitat-specific stability and persistence of benthic invertebrate communities in boreal lakes. Fund. Appl. Limnol., 171, 311–322. [CrossRef]
  • Stenroth P. and Nyström P., 2003. Exotic crayfish in a brown water stream: effects on juvenile trout, invertebrates and algae. Freshw. Biol., 48, 466–475. [CrossRef]
  • Stenroth P., Holmqvist N., Nyström P., Berglund O., Larsson P. and Graneli W., 2006. Stable isotopes as an indicator of diet in omnivorous crayfish (Pacifastacus leniusculus): the influence of tissue, sample treatment, and season. Can. J. Fish. Aquat. Sci., 63, 821–831. [CrossRef]
  • Suring E. and Wing S.R., 2009. Isotopic turnover rate and fractionation in multiple tissues of red rock lobster (Jasus edwardsii) and blue cod (Parapercis colias): Consequences for ecological studies. J. Exp. Mar. Biol. Ecol., 370, 56–63. [CrossRef]
  • Syväranta J., Hämäläinen H. and Jones R.I., 2006. Within-lake variability in carbon and nitrogen stable isotope signatures. Freshw. Biol., 51, 1090–1102. [CrossRef]
  • Usio N., 2000. Effects of crayfish on leaf processing and invertebrate colonisation of leaves in a headwater stream: decoupling of a trophic cascade. Oecologia, 124, 608–614. [CrossRef] [PubMed]
  • Vadeboncoeur Y. and Van der Zanden M.J., 2002. Putting the lake back together: reintegrating benthic pathways into lake food web models. BioScience, 52, 44–54. [CrossRef]
  • Vander Zanden M.J. and Graton C., 2011. Blowin’ in the wind: reciprocal airborne carbon fluxes between lakes and land. Can. J. Fish. Aquat. Sci., 68, 170–182. [CrossRef]
  • Van der Zanden M.J. and Rasmussen J.B., 2001. Variation in delta N-15 and delta C-13 trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanog., 46, 2061–2066. [CrossRef]
  • Vander Zanden M.J. and Vadeboncoeur Y., 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology, 83, 2152–2161. [CrossRef]
  • Van der Zanden M.J., Casselman J.M. and Rasmussen J.B., 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature, 401, 464–467. [CrossRef]
  • Van der Zanden M.J., Chandra S., Park S., Vadeboncoeur Y. and Goldman C.R., 2006. Efficiencies of benthic and pelagic trophic pathways in a subalpine lake. Can. J. Fish. Aquat. Sci., 63, 2608–2620. [CrossRef]
  • Vanni M.J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst., 33, 341–370. [CrossRef]
  • Weidman R.P., Schindler D.W. and Vinebrooke R.D., 2011. Pelagic food web interactions among benthic invertebrates and trout in mountain lakes. Freshw. Biol., 6, 1081–1094. [CrossRef]
  • Westman K., Savolainen R. and Julkunen M., 2002. Replacement of the native crayfish Astacus astacus by the introduced species Pacifastacus leniusculus in a small, enclosed Finnish lake: a 30-year study. Ecography, 25, 53–73. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.