Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 402, 2011
Eco-Hydro 2010
SER 2010
Article Number 03
Number of page(s) 19
Section Eco-Hydro 2010
Published online 01 September 2011
  • Angilletta Jr. M.J., 2009. Thermal adaptation. A theoretical and empirical synthesis, Oxford University Press, Oxford. [Google Scholar]
  • Angilletta Jr. M.J., Niewiarowski P.H. and Navas C.A., 2002. The evolution of thermal physiology in ectotherms. J. Therm. Biol., 27, 249–268. [CrossRef] [Google Scholar]
  • Balayla D.J. and Moss B., 2003. Spatial patterns and population dynamics of plant-associated microcrustacea (Cladocera) in an English shallow lake (Little Mere, Cheshire). Aquatic Ecol., 37, 417–435. [Google Scholar]
  • Barnes H. and Barnes M., 1969. Seasonal changes in the acutely determined oxygen consumption and effect of temperature for three common cirripedes, and Balanus balanoides (L.), B. balanus (L.) and Chthamalus stellatus (Poli). Journal of Experimental Marine Biology and Ecology, 4, 36–50. [CrossRef] [Google Scholar]
  • Bays J.S. and Crisman T.L., 1983. Zooplankton and trophic state relationships in Florida lakes. Can. J. Fish. Aquat. Sci., 40, 1813–1819. [CrossRef] [Google Scholar]
  • Behrens W., Hoffmann K.H., Kempa S., Gassler S. and Merkelwallner G., 1983. Effects of diurnal thermoperiods and quickly oscillating temperatures on the development and reproduction of crickets. Gryllus bimaculatus. Oecologia, 59, 279–287. [CrossRef] [PubMed] [Google Scholar]
  • Bertilsson J., Berzing B. and Pejler B., 1995. Occurrence of limnic micro-crustaceans in relation to temperature and oxygen. Hydrobiologia, 299, 163–167. [CrossRef] [Google Scholar]
  • Bevan L., Wallen D.G. and Winner J.M., 1980. The effect of temperature, irradiance and animal size on incorporation rates of Simocephalus vetulus. Hydrobiologia, 69, 73–78. [CrossRef] [Google Scholar]
  • Bottrell H.H., 1974. The relationship between temperature and duration of egg development in some epiphytic cladocera and copepoda from the River Thomez Reading, with a discussion of temperature functions. Oecologia, 18, 63–84. [Google Scholar]
  • Brooks J.L. and Dodson S.T., 1965. Predation, body size, and composition of the plankton. Science, 150, 29–35. [Google Scholar]
  • Chow-Fraser P., 1986. An empirical model to predict in situ grazing rates of Diaptomus minutus Lilleborg on small algal particles. Can. J. Fish. Aquat. Sci., 43, 1065–1070. [CrossRef] [Google Scholar]
  • Chow-Fraser P. and Knoechel R., 1985. Factors regulating in situ filtering rates of Cladocera. Can. J. Fish. Aquat. Sci., 42, 567–576. [CrossRef] [Google Scholar]
  • Costlow Jr. J.D., and Bookhout C.G., 1971. The effect of cyclic temperatures on larval development in the mud-crab Rhithropanopeus harrisii. In: Crisp D.J. (ed.), Fourth European Marine Biology Symposium, 211, Cambridge University Press, Cambridge. [Google Scholar]
  • Cristoffersen K., Riemann B., Klysner A. and Shindergaard M., 1993. Potential role of fish predation and natural populations of zooplankton in structuring a plankton community in eutrophic lake water. Limnol. Oceanogr., 38, 561–573. [Google Scholar]
  • Dajos R., 1975. Fundamentals of Ecology, Progress Publishers, Moscow, 415 p. [Dajos R., 1972. Précis d’Écologie, Gauthier-Villars, Paris] (in Russian). [Google Scholar]
  • Dent L. and Lutterschmidt W.I., 2003. Comparative thermal physiology of two sympatric sunfishes (Centrarchidae: Perciformes) with a discussion of microhabitat utilization. J. Therm. Biol. 28, 1, 67–74. [CrossRef] [Google Scholar]
  • Dong Y., Dong S., Tiana X., Wanga F., Zhanga M., 2006. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture, 255, 514–521. [CrossRef] [Google Scholar]
  • Dong Y., Dong S. and Jia T., 2008. Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus Selenka. Aquaculture, 275, 329–334. [CrossRef] [Google Scholar]
  • Du W.-G., Lu Y.-W., Shu L. and Bao Y.-X., 2007. Thermal dependence of food assimilation and locomotor performance in juvenile blue-tailed skinks, Eumeces elegans. Anim. Biol., 57, 29–38. [CrossRef] [Google Scholar]
  • Du W.-G., Shena J.-W. and Wanga L., 2009. Embryonic development rate and hatchling phenotypes in the Chinese three-keeled pond turtle (Chinemys reevesii): The influence of fluctuating temperature versus constant temperature. J. Therm. Biol., 34, 250–255. [CrossRef] [Google Scholar]
  • Duigan C., 1992. The ecology and distribution of the littoral freshwater Chydoridae (Branchiopoda, Anomopoda) of Ireland, with taxonomic comments on some species. Hydrobiologia, 241, 1–70. [CrossRef] [Google Scholar]
  • Eie J.A., 1974. A comparative study of the Crustacean communities in forest and mountain localities in the Vassfaret area (Southern Norway). Norw. J. Zool., 22, 177–205. [Google Scholar]
  • Elagina T.S., 1974. Effect of heated water discharge from the Kostroma thermal power plant on zooplankton of the Gorky reservoir. In: Proc. second symp. on the effect of thermal power plants on hydrologic and biological parameters of water bodies, Borok, 26–28. [Google Scholar]
  • Eubank W.P., Atmar J.W. and Ellington J.J., 1973. The significance and thermodynamics of fluctuating versus static thermal environments on Heliothis zea egg development rates. Environ. Entomol., 2, 491–498. [Google Scholar]
  • de Eyto E. and Irvin K., 2001. The response of three chydorid species to temperature, pH and food. Hydrobiologia, 459, 165–172. [CrossRef] [Google Scholar]
  • Fisher J.R. and Edwards D.L., 2002. Temperature-dependent egg hatch and cold storage of eggs of Otiorhynchus ovatus (L.) (Coleoptera: Curculionidae). J. Agr. Urban Entomol., 19, 109–116. [Google Scholar]
  • Fryer G., 1968. Evolution and adaptive radiation in the Chydoridae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. Phil. Trans. R Soc. (B), 254, 221–385. [Google Scholar]
  • Fryer G., 1993. The Freshwater Crustacea of Yorkshire; a faunistic and ecological survey, Yorkshire Naturalists’ Union & Leeds Philosophical and Literary Society, 312 p. [Google Scholar]
  • Galkovskaja G.A., Mitjanina I.F. and Golovchits V.A., 1988. Ecology-biological basis of mass cultivation of Rotifera. Science and Technics, Minsk (in Russian). [Google Scholar]
  • Gamperl A.K., Rodnick K.J., Faust H.A., Venn E.C., Bennett M.T., Crawshaw L.I., Keeley E.R., Powell M.S. and Li H.W., 2002. Metabolism, swimming performance, and tissue biochemistry of high desert redband trout (Oncorhynchus mykiss ssp.): evidence for phenotypic differences in physiological function. Physiol. Biochem. Zool., 75, 413–431. [CrossRef] [PubMed] [Google Scholar]
  • Geraldes A.M. and Boavida M.J., 2004. What factors affect the pelagic Cladocerans of the mesoeutrophic Azibo reservoir? Ann. Limnol., 40, 101–111. [Google Scholar]
  • Giebelhausen B. and Lampert W., 2001. Temperature reaction norms of Daphnia magna: the effect of food concentration. Freshw. Biol., 46, 281–289. [CrossRef] [Google Scholar]
  • Gorobey A.N., 1974. Transformation of zooplankton of Ivankovskoye reservoir in its circulation through the cooling system of Konakovskaya TPP. Influence of thermal power plants on the hydrology and biology of lakes. In: Proceedings of the Second Symposium, Borok, 26–28 August 31–34 (in Russian). [Google Scholar]
  • Gulyas P., 1980. The effect of temperature on the most frequent Cladocera and Copepoda species in lake Velenge. Aquacultura Hungaria, 2, 55–70. [Google Scholar]
  • Humpesch U.H., 1982. Effect of fluctuating temperature on the duration of embryonic development in two Ecdyonurus spp. and Rhithrogena cf. hybrida (Ephemeroptera) from Austrian streams. Oecologia, 55, 285–288. [CrossRef] [PubMed] [Google Scholar]
  • Hanasato T. and Yasuno M., 1985. Effect of temperature in the laboratory studies on growth, egg development and first parturition of five species of Cladocera. Jpn. J. Limnol., 46, 185–191. [CrossRef] [Google Scholar]
  • Hann B.J. and Zrum L., 1997. Littoral microcrustaceans (Cladocera, Copepoda) in a prairie coastal wetland: seasonal abundance and community structure. Hydrobiologia, 357, 37–52. [CrossRef] [Google Scholar]
  • Hanson J.M. and Peters R.H., 1983. Empirical prediction of crustacean biomass and profundal macrobenthos biomass in lakes. Can. J. Fish. Aquat. Sci., 41, 439–445. [CrossRef] [Google Scholar]
  • Hart R.C., 1988. Zooplankton feeding rates in relation to suspended solids content: potential influences on community structure in a turbid reservoir. Freshwater Biol., 19, 123–129. [CrossRef] [Google Scholar]
  • Hart R.C., 1990. Zooplankton distribution in relation to turbidity and related environmental gradients in a large subtropical reservoir: patterns and implications. Freshwater Biol., 24, 241–263. [CrossRef] [Google Scholar]
  • Havens K.E., 1991. Summer zooplankton dynamics in the limnetic and littoral zones of a humic acid lake. Hydrobiologia, 215, 21–29. [CrossRef] [Google Scholar]
  • Hernandez M., Bückle L.F. and Espina S., 2002. Temperature preference and acclimation in Poecilia sphenops (Pisces, Poeciliidae). Aquac. Res., 33, 933–940. [CrossRef] [Google Scholar]
  • Herzig A., 1984. Temperature and life strategies of Diaphanosoma brachyurum: an experimental study on development, growth and survival. Arch. Hydrobiol., 101, 143–178. [Google Scholar]
  • Hinz J. and Isquit J.R., 1974. The effect of thermal shocking on several strains of Blepharisma. J. Protozoology, 21, 416–417. [Google Scholar]
  • Hoelker F., 2003. The metabolic rate of roach in relation to body size and temperature. J. Fish Biol., 62, 565–579. [CrossRef] [Google Scholar]
  • Hofmann W., 1996. Empirical relationships between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments. Hydrobiologia, 318, 195–210. [CrossRef] [Google Scholar]
  • Hutchinson G.E., 1957. Concluding remarks. Cold Spring Harbour Symposium on Quantitative Biology, 22, 415–427. [Google Scholar]
  • IUPS Thermal Commission, 2003. Glossary of terms for thermal physiology. Third Edition. J. Therm. Biol., 28, 75–106. [Google Scholar]
  • Joshi D.S., 1996. Effect of fluctuating and constant temperatures on development, adult longevity and fecundity in the mosquito Aedes krombeini. J. Therm. Biol., 21, 151–154. [CrossRef] [Google Scholar]
  • Khan P.M., 1965. The effect of constant and varying temperatures on the development of Acanthocyclops viridis (Jurine). Proc. Roy. Trish. Acad. Ser. B, 64, 117–130. [Google Scholar]
  • Kirk K.L., 1991. Inorganic particles alter competition in grazing plankton: the role of selective feeding. Ecology, 72, 915–923. [CrossRef] [Google Scholar]
  • Kirk K.L. and Gilbert J.J., 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology, 71, 1741–1755. [CrossRef] [Google Scholar]
  • Kiselyov I.A., 1969. Plankton of the seas and continental waterbodies, Vol. 1: Science, Leningrad, 657 p. (in Russian). [Google Scholar]
  • Konstantinov A.S., 1993. Effect of temperature fluctuations on growth, energy and physiological state of young fish. Proceedings of the Russian Academy of Sciences. Ser. Biol, 1, 55–63 (in Russian). [Google Scholar]
  • Konstantinov A.S., Vechkanov B.C., Kuznetsov V.A. and Ruchin A.B., 2000. Astatic abiotic environment as a condition for optimizing the growth and development of larvae of common frog Rana temporaria L. Proceedings of the Russian Academy of Sciences, 371, 559–562 (in Russian). [Google Scholar]
  • Kreutzer C. and Lampert W., 1999. Exploitative competition in differently sized Daphnia species: A mecharistic explanation. Ecology, 80, 2348–2357. [Google Scholar]
  • LaBerge S. and Hann B.J., 1990. Acute temperature and oxygen stress among genotypes of Daphnia pulex and Simocephalus vetulus (Cladocera, Daphniidae) in relation to environmental conditions, Can. J. Zool., 68, 11, 2257–2263. [CrossRef] [Google Scholar]
  • Loiterton B., Sundbom M. and Vrede T., 2004. Separating physical and physiological effects of temperature on zooplankton feeding rate. Aquat. Sci., 66, 123–129. [CrossRef] [Google Scholar]
  • Luferova L.A. and Monakov A.V., 1966. Zooplankton of the Rybinsk Reservoir in 1956–1963 yy. In: Plankton and benthos of inland waters, Leningrad, 40–55 (in Russian). [Google Scholar]
  • Manca M. and Comoli P., 1999. Studies on zooplankton of Lago Paione Superiore. J. Limnol., 58, 131–135. [Google Scholar]
  • Manca M., De Bernardi R. and Savia A., 1986. Effects of fluctuating temperature and light conditions on the population dynamics and the life strategies of migrating and nonmigrating Daphnia species. Mem. Ist. Ital. Idrobiol., 44, 177–202. [Google Scholar]
  • McCauley E. and Kalff J., 1981. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Can. J. Fish. Aquat. Sci., 38, 458–463. [CrossRef] [Google Scholar]
  • McKee D., Atkinson D., Collings S.E., Eaton J.W., Gill A.B., Harvey I., Hatton K., Heyes T., Wilson D. and Moss B., 2003. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnol. Oceanogr., 48, 707–722. [CrossRef] [Google Scholar]
  • Melanie J.E. and Shine R., 1999. Sex differences in optimal incubation temperatures in a scincid lizard species. Oecologia, 118, 431–437. [CrossRef] [PubMed] [Google Scholar]
  • Merkel G., 1977. The effects of temperature and food quality on the development of Gryllus bimaculatus (Orthoptera, Gryllidae). Oecologia, 30, 129–140. [CrossRef] [PubMed] [Google Scholar]
  • Meyers D.G., 1984. Egg development of a chydorid cladoceran, Chydorus sphaericus, exposed to constant and alternating temperatures – Significance to secondary productivity in fresh waters. Ecology, 65, 309–320. [CrossRef] [Google Scholar]
  • Mezquita F. and Miracle M.R., 1997. Chydorid assemblages in the sedimentary sequence of Lake La Cruz (Spain), subject to water level changes. Hydrobiologia, 360, 277–285. [CrossRef] [Google Scholar]
  • Novingera D.C. and Coon Th.G., 2000. Behavior and physiology of the redside dace, Clinostomus elongatus, a threatened species in Michigan. Env. Biol. Fish., 57, 315–326. [CrossRef] [Google Scholar]
  • Odum E.P., 1971. Fundamentals of Ecology, W.B. Saunders Company, Philadelphia-London-Toronto, 740 p. [Google Scholar]
  • Orcutt J.D. and Porter K.G., 1983. Diel vertical migration by zooplankton: constant and fluctuating temperature effects on life history parameters of Daphnia. Limnol. Oceanogr., 28, 720–730. [Google Scholar]
  • Pace M.L., 1986. An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol. Oceanogr., 31, 45–55. [CrossRef] [Google Scholar]
  • Perrow M.R., Jowitt A.J.D., Stansfield J.H. and Phillips G.L., 1999. The practical importance of the interactions between fish, zooplankton and macrophytes in shallow restoration. Hydrobiologia, 395/396, 199–210. [CrossRef] [Google Scholar]
  • Poff N.L. and Zimmerman J.K.H., 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology, 55, 194–205. [Google Scholar]
  • Prosser L. and Brown F., 1967. Comparison physiological of animals, Mir, Moscow, 766 p. (in Russian). [Google Scholar]
  • Pushchina L.I. and Verbitsky V.B., 1983. About interrelation of a vegetative and animal plankton of ponds for cultivation of young fishes. Ground and water ecosystems, Gorky, 109–117 (in Russian). [Google Scholar]
  • Ranta E. and Tjossem S., 1987. Size and shape of Daphnia longispina in rock-pools. Hydrobiologia, 145, 259–268. [Google Scholar]
  • Rivjer I.K., 1986. Composition and ecology of zooplankton communities in the winter, Leningrad, Moscow, 160 p. (in Russian). [Google Scholar]
  • Rivier I.K., 1992. Ecology of Cladocera in winter water bodies. In: Current problems in the study of Cladocera, Gidrometeoizdat, St. Petersburg, 65–80 (in Russian). [Google Scholar]
  • Rodnick K.J., Gamperl A.K., Lizars K.R., Bennett M.T., Rausch R.N. and Keeley E.R., 2004. Thermal tolerance and metabolic physiology among redband trout populations in south-eastern Oregon. J. Fish Biol., 64, 310–335. [CrossRef] [Google Scholar]
  • Ronneberger D., Kasprzak P. and Krienitz L., 1993. Long-term changes in the rotifer fauna after biomanipulation in Hausee and its relationship to the crustacean and phytoplankton community. Hydrobiologia, 255/256, 297–340. [Google Scholar]
  • Sarviro V.S., 1985. Temperature dependence of developmental period and specific growth rate of immature female Daphnia longispina O.F. Müller (Crustacea, Cladocera) in enclosure experiments, Gidrobiol. Zh., 21, 28–33. [Google Scholar]
  • Sarviro V.S. and Verbitsky V.B., 1988. Food selectivity of planktonic filtration organisms in a flowing gradient of forages. II. Food selectivity of Bosmina longirostris O.F. Müller. Biology of Internal Waters. The Information Bulletin, 80, 50–53 (in Russian). [Google Scholar]
  • Schmidt G.H., 1981. Growth and behaviour of Aerotylus patruelis (H. S.) larvae in temperature gradients under laboratory conditions. Zool. Anz., 206, 1125–1129. [Google Scholar]
  • Semenchenko V.P., Razlutskii V.I. and Feneva I.Yu., 2005. Biotic interactions as a factor influencing the success of the invasion of Cladocerans into aquatic communities. In: Alien Species in Holarctic (Borok_2), Abstr. Second Int. Symp. on Studying Invasive Species), Rybinsk, 116–117 (in Russian). [Google Scholar]
  • Semenchenko V.P., Razlutskii V.I., Feneva I.Yu. and Aibulatov D.N., 2007. Biotic relations affecting species structure in zooplankton communities. Hydrobiologia, 579, 219–231. [CrossRef] [Google Scholar]
  • Sharitz R.R. and Luvall J.C., 1978. Growth of duckweed under constant and variable temperatures, in energy and environmental stress in aquatic systems, DOE Symp. Ser. (CONF-77I114). In: Thorp J.H. and Gibbons J.W. (eds.), Springfield, VA, Natl. Techn. Inf. Service. [Google Scholar]
  • Shelford V.E., 1927. An experimental investigation of the relations of the codling moth to weather and climate. Bull. Illinois Nat. Hist. Survey, 16, 307–440. [Google Scholar]
  • Schiel D.R., Steinbeck J.R. and Foster M.S., 2004. Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology, 85, 1833–1839. [CrossRef] [Google Scholar]
  • Stansfield J.H., Perrow M.R., Tench L.D., Jowitt A.J.D. and Taylor A.A.L., 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia, 342/343, 229–240. [Google Scholar]
  • Starkweather P.L. and Bogdan K.G., 1980. Detrital feeding in natural zooplankton communities: discrimination between live and dead algal foods. Hydrobiologia, 73, 83–85. [CrossRef] [Google Scholar]
  • Stemberger R.S., 1981. A general approach to the culture of planktonic rotifers. Can. J. Fish. Aquat. Sci., 38, 721–724. [CrossRef] [Google Scholar]
  • Sushchenja L.M., 1978. Growth of animals under oscillating temperature conditions. In: Elements of water ecosystems, Works VGBO, 22, 140–150 (in Russian). [Google Scholar]
  • Svirskiy A.M. and Valtonen T., 2002. A daily rhythm of thermoregulation behaviour of juvenile muksun, Coregonus muksun. Problems of Ichthyology, 42, 811–819 (in Russian). [Google Scholar]
  • Sweeney B.W. and Schnack J.A., 1977. Egg development, growth, and metabolism of Sigara alternata (Say) (Hemiptera: Corixidae) in fluctuating thermal environments. Ecology, 58, 265–277. [CrossRef] [Google Scholar]
  • Thorp J.H. and Hoss D.E., 1975. Effects of salinity and cyclic temperature on survival of two sympatric species of grass shrimp (Palaemoneies), and their relationship to natural distributions. J. Exp. Mar. Biol. Ecol., 18, 19–28. [CrossRef] [Google Scholar]
  • Thorp J.H. and Wineriter S.A., 1981. Stress and growth response of juvenile crayfish to rhythmic and arrhythmic temperature fluctuations. Arch. Environm. Contam. Toxicol., 10, 69–77. [CrossRef] [Google Scholar]
  • Tilman D., Kiesling R., Sterner R., Kilham S.S. and Johnson F.A., 1986. Green, blue green and diatom algae – taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Archiv für Hydrobiologie, 106, 473–485. [Google Scholar]
  • Van Doorslaer W., Stocks R., Jeppensen E. and Meester L., 2007. Adaptive microevolutionary responses to simulated global warming in Simocephalus vetulus: a mesocosm study. Global Change Biology, 13, 878–886. [CrossRef] [Google Scholar]
  • Velichko A.N., 1982. Effect of heating on the production of mass species of cladocerans from Ivankovskoye reservoir, Ecology of aquatic organisms of Upper Volga reservoirs, Leningrad, 123–143 (in Russian). [Google Scholar]
  • Verbitsky V.B., Pivakovskaja I.V. and Mjagkova G.N., 1980. About interrelation of a feed of young carps of the first year with development of a natural forage reserve of ponds. In: Problems of protection of waters and fish resources of the Volga region, Kazan, 101–103 (in Russian). [Google Scholar]
  • Verbitsky V.B. and Verbitskaya T.I., 1989. Efficiency of use Bosmina longirostris O.F. Müller as a starting alive forage for yang fishes. Biol. Internal Waters. Inform. Bull., 86, 41–44 (in Russian). [Google Scholar]
  • Verbitsky V.B., Verbitskaya T.I. and Golovanova E.V., 2002. The critical temperature maximum for Daphnia longispina (O.F. Müller, 1785) (Crustacea: Cladocera) under natural conditions and in experiment. Biol. Inl. Water, 4, 45–50 (in Russian). [Google Scholar]
  • Verbitsky V.B. and Verbitskaya T.I., 2007. Ecological optimum and effect of delayed action of a factor. Doklady Biological Sciences, 416, 386–388. [CrossRef] [Google Scholar]
  • Verbitsky V.B., 2008. The notion of ecological optimum and its determination in freshwater poikilothermic animals. Journal of General Biology, 69, 44–56 (in Russian). [Google Scholar]
  • Whiteside M.C., 1970. Danish chydorid Cladocera: modern ecology and core studies. Ecol. Monogr., 40, 79–118. [CrossRef] [Google Scholar]
  • Whiteside M.C. and Harmsworth R.V., 1967. Species diversity in chydorid (Cladocera) communities. Ecology, 48, 664–667. [CrossRef] [Google Scholar]
  • Zettler E.R. and Carter J.C.H., 1986. Zooplankton community and species responses to a natural turbidity gradient in Lake Temiskaming, Ontario-Quebec. Can. J. Fish. Aquat. Sci., 43, 665–673. [CrossRef] [Google Scholar]
  • Zurek R. and Bucka H., 1994. Algal size classes and phytoplankton-zooplankton interacting effects. J. Plankton Res., 10, 583–601. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.