Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 402, 2011
Eco-Hydro 2010
SER 2010
Article Number 02
Number of page(s) 12
Section Eco-Hydro 2010
Published online 03 August 2011
  • Alimova A.F. and Mingazova N.M. (eds.), 2001. The unique ecosystems of karst lakes in the middle Povalzhie, Kazan, 256 p. (in Russian). [Google Scholar]
  • Biebl H. and Pfennig N.P., 1978. Growth yields of green sulfur barteria in mixed culture with sulfur and sulfate reducing bacteria. Arch. Microbiol., 117, 9–16. [CrossRef] [Google Scholar]
  • Brönmark Ch. and Hansson L.-A., 1998. The biology of lakes and ponds, Univers. Press, Oxford, 216 p. [Google Scholar]
  • Camacho A., Vicente E. and Miracle M.R., 2000. Spatio-temporal distribution and growth dynamics of phototrophic sulfur bacteria populations in the sulfide-rich Lake Arcas. Aquat. Sci., 62, 334–349. [CrossRef] [Google Scholar]
  • Camacho A., Picazo A., Miracle M.R. and Vicente E., 2003. Spatial distribution and temporal dynamics of picocyanobacteria in a meromictic karstic lake. Algol. Stud., 109, 171–184. [CrossRef] [Google Scholar]
  • Cook R., 1992. Controls of sulfur cycling in small lakes. Interact. Biogeochem. Cycl. Aquat. Ecosyst., 7, 211–223. [Google Scholar]
  • Garcia-Gil L.J., Casamitjana X. and Abella C.A., 1996. Comparative study of two meromictic basins of Lake Banyoles (Spain) with sulphur phototrophic bacteria. Hydrobiologia, 319, 203–211. [CrossRef] [Google Scholar]
  • Garlick S., Oren A. and Padan E., 1977. Occurence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J. Bacteriol., 129, 623–629. [PubMed] [Google Scholar]
  • Gorlenko V.M., 1992. The role of purple and green bacteria in the carbon and sulphur cycles in stratified lakes. In: Degens E.T., Kempe S., Lein A. and Sorokin Y. (eds.), The Interactions of Biogeochemical Cycles in Aqueous Systems, 7, Hamburg, 51–57. [Google Scholar]
  • Gorlenko V., Dubinina G. and Kuznecov S., 1977. Ecology of the water microorganisms, Nauka, Moscow, 287 p. (in Russian). [Google Scholar]
  • Gorlenko V., Vajnshtein M. and Chebotor’ov E., 1980. Bacteria of sulfur and iron cycling in the meromictic Lake Kuznechiha. Microbiology, 59, 804–812. [Google Scholar]
  • Gusev E., 2008. Phytosynthetic pigments of plankton in some karst lakes of central Russia. Inland Wat. Biol., 1, 217–224. [Google Scholar]
  • Holmer M. and Storkholm P., 2001. Sulphate reduction and sulphur cycling in freshwater sediments: A review. Freshwater Biol., 46, 431–451. [CrossRef] [Google Scholar]
  • Jeffrey S.W. and Humphrey G.F., 1975. New spectrophotometric equation for determining chlorophyll a, b, c1 and c2. Biochem. Physiol. Pfl., 167, 191–194. [Google Scholar]
  • Kemp P.F., Sherr B.F., Sherr E.B. and Cole J.J. (eds.), 1993. Handbook of Methods in Aquatic Microbial Ecology, Lewis Publishers, 800 p. [Google Scholar]
  • Kilkus K. and Taminskas J., 2000. Geographical conditions of nature use in the Karst region. In: Griniute D. and Matukoniene V. (eds.), The Northern Lithuanian Karst Region, Institute of Geography, Vilnius, 67–78. [Google Scholar]
  • Kosolapov D., Rogozin D., Gladchenko I., Kopylov A. and Zakharova E., 2003. Microbial sulfate reduction in a brackish meromictic steppe lake. Aquat. Ecol., 37, 215–226. [CrossRef] [Google Scholar]
  • Krevs A. and Kucinskiene A., 2009. Microbial mineralization of organic matter in bottom sediments of small anthropogenised lakes. Ekol., 55, 125–130. [Google Scholar]
  • Kucinskiene A. and Paskauskas R., 2003. Bacterial sulphate reduction in Lithuanian lakes. Geogr. Yearbook, 36, 53–67. [Google Scholar]
  • Kuznetsov S. and Dubinina G., 1989. Methods of investigation of aquatic microorganisms, Nauka, Moskow, 285 p. (in Russian). [Google Scholar]
  • Lapteva N., Dubinina G. and Kuznecov C., 1985. Microbiological characteristics of some karstic lakes in Gorkij region. Hydrobiol. J., 21, 61–68. [Google Scholar]
  • Miracle M., Vicente E. and Pedrós-Alió C., 1992. Biological studies of Spanish meromictic and stratified karstic lakes. Limnetica, 8, 59–77. [Google Scholar]
  • Merkiene R. and Ceponyte V., 1994. Unified sewage and sutface waters quality assessment methods, 1, Vilnius, 221 p. (in Lithuanian). [Google Scholar]
  • Olrik K., Blomqvist P., Brettum P., Cronberg G. and Eloranta P., 1998. Methods for Quantitative Assessment of Phytoplankton in Freshwaters, Naturvårdsverket Stockholm, 86 p. [Google Scholar]
  • Overmann J. and Garcia-Pichel F., 2006. The phototrophic way of life. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H. and Stackebrandt E. (eds.), The Prokaryotes, Springer, 2, New York, 32–86. [Google Scholar]
  • Overmann J. and Schubert K., 2002. Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Arch. Microb., 177, 201–208. [CrossRef] [Google Scholar]
  • Palagushkina O., 2004. Ecology of phytoplankton in karst lakes of middle Povolzhie. Summary of doctoral dissertation, Kazan, 25 p. (in Russian). [Google Scholar]
  • Paskauskas R., Kucinskiene A. and Zvikas A., 2005. Sulfate-reducing bacteria in gypsum karst lakes of northern Lithuania. Microbiology, 74, 715–721. [CrossRef] [Google Scholar]
  • Pfennig N., 1989. Ecology of phototrophic purple and green sulfur bacteria. In: Schlegel H.G. and Bowien B. (eds.), Autotrophic Bacteria, Berlin, Heidelberg, New York, Springer, 97–116. [Google Scholar]
  • Postgate J.R., 1984. The Sulfate-Reducing Bacteria, Second edition, Cambridge Univer. Press, 208 p. [Google Scholar]
  • Rasomavicius V. (ed.), 2001. Habitation of European significance in Lithuania. Explanatory guide of significant habitations for Europe Union detected in Lithuania, Vilnius, 138 p. (in Lithuanian). [Google Scholar]
  • Rodrigo M.A., Vicente E. and Miracle M.R., 2000. The physical, chemical and biological characteristics of the holomictic sulphated Lake Arcas-2 (Cuenca, Spain). Hydrobiologia, 418, 153–168. [CrossRef] [Google Scholar]
  • Sorokin Ju., 1999. Aquatic Microbial Ecology, Backhaus publishers, 247 p. [Google Scholar]
  • Stal L. and Moezelaar R., 1997. Fermentation in cyanobacteria. FEMS Microb. Rew., 21, 179–211. [CrossRef] [Google Scholar]
  • Sulijiene R., 2000. Primary production of phytoplankton in the freshwater ecosystems of Lithuania. Acta Hydrobiol. Lithuan., 11, 32–40. [Google Scholar]
  • Takahashi M. and Ichimura S., 1970. Photosynthetic properties and growth of photosynthetic sulphur bacteria in lakes. Limnol. Oceanogr., 15, 929–944. [CrossRef] [Google Scholar]
  • Taminskas J., 1997. Hydrological peculiarities of watershed karst. Geogr. Yearbook, 36, 53–67. [Google Scholar]
  • Taminskas J. and Marcinkevicius V., 2002. Karst geoindicators of environmental change: the case of Lithuania. Env. Geol., 42, 757–766. [CrossRef] [Google Scholar]
  • UNESCO, 1966. Determinations of photosynthetic pigments in seawater – Monographs and Oceanographs, Methodology, Paris, 1 p. [Google Scholar]
  • Vicente E. and Miracle M.R., 1988. Physicochemical and microbial stratification in a meromictic karstic lake of Spain. Vert. Int. Ver. Limnol., 23, 522–529. [Google Scholar]
  • Vila X., Dokulil M., Garcia-Gil L.J., Abella C., Borrego C.M. and Bañeras L., 1996. Composition and distribution of phototrophic bacterioplankton in the deep communities of several central European lakes: The role of light quality. Arch. Hydrobiol. Spec. Issues Adv. Limnol., 48, 183–196. [Google Scholar]
  • Vila X., Abella C., Figueras J. and Hurley J., 1998. Vertical models of phototrophic bacterial distribution in the metalimnetic microbial communities of several freshwater North-American kettle lakes. FEMS Microbiol. Ecol., 25, 287–299. [CrossRef] [Google Scholar]
  • Volkov I. and Zhabina N., 1980. Methods of determination of various sulfur compounds in marine sediments, Nauka, Moskow, 216 p. (in Russian). [Google Scholar]
  • Zvikas A., 2004. Structure of microorganisms and peculiarities of their activity in gypsum kars lakes of North Lithuania. Summary of doct. dissertation, 35 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.