Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 402, 2011
Eco-Hydro 2010
SER 2010
Article Number 02
Number of page(s) 12
Section Eco-Hydro 2010
DOI https://doi.org/10.1051/kmae/2011013
Published online 03 August 2011
  • Alimova A.F. and Mingazova N.M. (eds.), 2001. The unique ecosystems of karst lakes in the middle Povalzhie, Kazan, 256 p. (in Russian).
  • Biebl H. and Pfennig N.P., 1978. Growth yields of green sulfur barteria in mixed culture with sulfur and sulfate reducing bacteria. Arch. Microbiol., 117, 9–16. [CrossRef]
  • Brönmark Ch. and Hansson L.-A., 1998. The biology of lakes and ponds, Univers. Press, Oxford, 216 p.
  • Camacho A., Vicente E. and Miracle M.R., 2000. Spatio-temporal distribution and growth dynamics of phototrophic sulfur bacteria populations in the sulfide-rich Lake Arcas. Aquat. Sci., 62, 334–349. [CrossRef]
  • Camacho A., Picazo A., Miracle M.R. and Vicente E., 2003. Spatial distribution and temporal dynamics of picocyanobacteria in a meromictic karstic lake. Algol. Stud., 109, 171–184. [CrossRef]
  • Cook R., 1992. Controls of sulfur cycling in small lakes. Interact. Biogeochem. Cycl. Aquat. Ecosyst., 7, 211–223.
  • Garcia-Gil L.J., Casamitjana X. and Abella C.A., 1996. Comparative study of two meromictic basins of Lake Banyoles (Spain) with sulphur phototrophic bacteria. Hydrobiologia, 319, 203–211. [CrossRef]
  • Garlick S., Oren A. and Padan E., 1977. Occurence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J. Bacteriol., 129, 623–629. [PubMed]
  • Gorlenko V.M., 1992. The role of purple and green bacteria in the carbon and sulphur cycles in stratified lakes. In: Degens E.T., Kempe S., Lein A. and Sorokin Y. (eds.), The Interactions of Biogeochemical Cycles in Aqueous Systems, 7, Hamburg, 51–57.
  • Gorlenko V., Dubinina G. and Kuznecov S., 1977. Ecology of the water microorganisms, Nauka, Moscow, 287 p. (in Russian).
  • Gorlenko V., Vajnshtein M. and Chebotor’ov E., 1980. Bacteria of sulfur and iron cycling in the meromictic Lake Kuznechiha. Microbiology, 59, 804–812.
  • Gusev E., 2008. Phytosynthetic pigments of plankton in some karst lakes of central Russia. Inland Wat. Biol., 1, 217–224.
  • Holmer M. and Storkholm P., 2001. Sulphate reduction and sulphur cycling in freshwater sediments: A review. Freshwater Biol., 46, 431–451. [CrossRef]
  • Jeffrey S.W. and Humphrey G.F., 1975. New spectrophotometric equation for determining chlorophyll a, b, c1 and c2. Biochem. Physiol. Pfl., 167, 191–194.
  • Kemp P.F., Sherr B.F., Sherr E.B. and Cole J.J. (eds.), 1993. Handbook of Methods in Aquatic Microbial Ecology, Lewis Publishers, 800 p.
  • Kilkus K. and Taminskas J., 2000. Geographical conditions of nature use in the Karst region. In: Griniute D. and Matukoniene V. (eds.), The Northern Lithuanian Karst Region, Institute of Geography, Vilnius, 67–78.
  • Kosolapov D., Rogozin D., Gladchenko I., Kopylov A. and Zakharova E., 2003. Microbial sulfate reduction in a brackish meromictic steppe lake. Aquat. Ecol., 37, 215–226. [CrossRef]
  • Krevs A. and Kucinskiene A., 2009. Microbial mineralization of organic matter in bottom sediments of small anthropogenised lakes. Ekol., 55, 125–130.
  • Kucinskiene A. and Paskauskas R., 2003. Bacterial sulphate reduction in Lithuanian lakes. Geogr. Yearbook, 36, 53–67.
  • Kuznetsov S. and Dubinina G., 1989. Methods of investigation of aquatic microorganisms, Nauka, Moskow, 285 p. (in Russian).
  • Lapteva N., Dubinina G. and Kuznecov C., 1985. Microbiological characteristics of some karstic lakes in Gorkij region. Hydrobiol. J., 21, 61–68.
  • Miracle M., Vicente E. and Pedrós-Alió C., 1992. Biological studies of Spanish meromictic and stratified karstic lakes. Limnetica, 8, 59–77.
  • Merkiene R. and Ceponyte V., 1994. Unified sewage and sutface waters quality assessment methods, 1, Vilnius, 221 p. (in Lithuanian).
  • Olrik K., Blomqvist P., Brettum P., Cronberg G. and Eloranta P., 1998. Methods for Quantitative Assessment of Phytoplankton in Freshwaters, Naturvårdsverket Stockholm, 86 p.
  • Overmann J. and Garcia-Pichel F., 2006. The phototrophic way of life. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H. and Stackebrandt E. (eds.), The Prokaryotes, Springer, 2, New York, 32–86.
  • Overmann J. and Schubert K., 2002. Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Arch. Microb., 177, 201–208. [CrossRef]
  • Palagushkina O., 2004. Ecology of phytoplankton in karst lakes of middle Povolzhie. Summary of doctoral dissertation, Kazan, 25 p. (in Russian).
  • Paskauskas R., Kucinskiene A. and Zvikas A., 2005. Sulfate-reducing bacteria in gypsum karst lakes of northern Lithuania. Microbiology, 74, 715–721. [CrossRef]
  • Pfennig N., 1989. Ecology of phototrophic purple and green sulfur bacteria. In: Schlegel H.G. and Bowien B. (eds.), Autotrophic Bacteria, Berlin, Heidelberg, New York, Springer, 97–116.
  • Postgate J.R., 1984. The Sulfate-Reducing Bacteria, Second edition, Cambridge Univer. Press, 208 p.
  • Rasomavicius V. (ed.), 2001. Habitation of European significance in Lithuania. Explanatory guide of significant habitations for Europe Union detected in Lithuania, Vilnius, 138 p. (in Lithuanian).
  • Rodrigo M.A., Vicente E. and Miracle M.R., 2000. The physical, chemical and biological characteristics of the holomictic sulphated Lake Arcas-2 (Cuenca, Spain). Hydrobiologia, 418, 153–168. [CrossRef]
  • Sorokin Ju., 1999. Aquatic Microbial Ecology, Backhaus publishers, 247 p.
  • Stal L. and Moezelaar R., 1997. Fermentation in cyanobacteria. FEMS Microb. Rew., 21, 179–211. [CrossRef]
  • Sulijiene R., 2000. Primary production of phytoplankton in the freshwater ecosystems of Lithuania. Acta Hydrobiol. Lithuan., 11, 32–40.
  • Takahashi M. and Ichimura S., 1970. Photosynthetic properties and growth of photosynthetic sulphur bacteria in lakes. Limnol. Oceanogr., 15, 929–944. [CrossRef]
  • Taminskas J., 1997. Hydrological peculiarities of watershed karst. Geogr. Yearbook, 36, 53–67.
  • Taminskas J. and Marcinkevicius V., 2002. Karst geoindicators of environmental change: the case of Lithuania. Env. Geol., 42, 757–766. [CrossRef]
  • UNESCO, 1966. Determinations of photosynthetic pigments in seawater – Monographs and Oceanographs, Methodology, Paris, 1 p.
  • Vicente E. and Miracle M.R., 1988. Physicochemical and microbial stratification in a meromictic karstic lake of Spain. Vert. Int. Ver. Limnol., 23, 522–529.
  • Vila X., Dokulil M., Garcia-Gil L.J., Abella C., Borrego C.M. and Bañeras L., 1996. Composition and distribution of phototrophic bacterioplankton in the deep communities of several central European lakes: The role of light quality. Arch. Hydrobiol. Spec. Issues Adv. Limnol., 48, 183–196.
  • Vila X., Abella C., Figueras J. and Hurley J., 1998. Vertical models of phototrophic bacterial distribution in the metalimnetic microbial communities of several freshwater North-American kettle lakes. FEMS Microbiol. Ecol., 25, 287–299. [CrossRef]
  • Volkov I. and Zhabina N., 1980. Methods of determination of various sulfur compounds in marine sediments, Nauka, Moskow, 216 p. (in Russian).
  • Zvikas A., 2004. Structure of microorganisms and peculiarities of their activity in gypsum kars lakes of North Lithuania. Summary of doct. dissertation, 35 p.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.