Issue
Knowl. Manag. Aquat. Ecosyst.
Number 426, 2025
Riparian ecology and management
Article Number 16
Number of page(s) 8
DOI https://doi.org/10.1051/kmae/2025013
Published online 03 June 2025
  • Alaoui KS, Tychon B, Joachim S, Geffard A, Nott K, Ronkart S, Porcher JM, Beaudouin R, Robert C, Fauconnier ML, Saive M. 2021. Toxic effects of a mixture of five pharmaceutical drugs assessed using Fontinalis antipyretica Hedw. Ecotoxicol Environ Saf 225: 112727. [CrossRef] [PubMed] [Google Scholar]
  • Albrecht E, Hannonen O, Palacin-Lizarbe C, Suni J, Härkönen L, Vainikka A, Soininen N, Kukkonen J. 2024. Browning of boreal lakes: Do public perceptions and governance meet the biological foundations? Ecol Appl 33: e2856. [Google Scholar]
  • Asmala E, Carstensen J, Räike A. 2019. Multiple anthropogenic drivers behind upward trends in organic carbon concentrations in boreal rivers. Environ Res Lett 14: 124018. [CrossRef] [Google Scholar]
  • Barko JW, Filbin GJ. 1983. Influences of light and temperature on chlorophyll composition in submersed freshwater macrophytes. Aquat Bot 15: 249–255. [CrossRef] [Google Scholar]
  • Bhatta K, Patra HK. 2020. A review on aquatic macrophytes as bioindicators of water quality of lakes. Ecol Environ Conserv 26: 1158–1161. [Google Scholar]
  • Cooper TF, Gilmour JP, Fabricius KE. 2009. Bioindicators of changes in water quality on coral reefs: review and recommendations for monitoring programmes. Coral Reefs 28: 589–606. [CrossRef] [Google Scholar]
  • Dar NA, Pandit AK, Ganal BA. 2013. Seasonal variation in the pigment content of dominant macrophytes from Mular Lake, Kashmir Himalaya. India Biochem Pharmacol 2: 2167–501 [Google Scholar]
  • De Wit HA, Valinia S, Weyhenmeyer GA, Futter MN, Kortelainen P, Austnes K, Hessen DO, Räike A, Laudon H, Vuorenmaa J. 2016. Current browning of surface waters will be further promoted by wetter climate. Environ Sci Technol Lett 12: 430–435. [CrossRef] [Google Scholar]
  • Eloranta P. 1999. Humus and water physics. In: Keskitalo J, Eloranta P, ed. Limnology of Humic Waters. Leiden: Backhuys Publishers, 59–74. [Google Scholar]
  • Estlander S, Pippingsköld E, Horppila J. 2021. Artificial ditching of catchments and brownification-connected water quality parameters of lakes. Water Res 205: 117674. [CrossRef] [PubMed] [Google Scholar]
  • Estlander S, Rajala S, Pippingsköld E, Nurminen L, Horppila J. 2025. Response rate of submerged macrophyte chlorophyll content under changing light conditions. Limnology 26: 293–300. [CrossRef] [Google Scholar]
  • Evans CD, Jones TG, Burden A, Ostle N, Zielinski P, Cooper MDA, Peacock M, Clark JM, Oulehle F, Cooper D, Freeman C. 2012. Acidity controls on dissolved organic carbon mobility in organic soils. Global Change Biol 18: 3317–3331. [CrossRef] [Google Scholar]
  • Finnish Standards Association SFS. 1997. Water Analysis. Guidelines for the determination of total organic carbon and dissolved organic carbon. Finnish Environment Institute, Standard SFS-EN 1484. [Google Scholar]
  • Finnish Standards Association SFS. 2011. Water quality. Examination and determination of colour. Finnish Environment Institute, Standard SFS-EN ISO 7887. [Google Scholar]
  • Finstad AG, Andersen T, Larsen S, Tominaga K, Blumentrath S, de Wit HA, Tømmervik H, Hessen DO. 2016. From greening to browning: catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes. Sci Rep 6: 31944. [CrossRef] [PubMed] [Google Scholar]
  • Gomi T, Sidle RC, Richardson JS. 2002. Understanding processes and downstream linkages of headwater systems: headwaters differ from downstream reaches by their close coupling to hillslope processes, more temporal and spatial variation, and their need for different means of protection from land use. BioScience 52: 905–916. [CrossRef] [Google Scholar]
  • Glime JM. 2014. Photosynthesis in aquatic bryophytes. In: Hanson D, Rice S, ed. Photosynthesis in Bryophytes and Early Land Plants. Advances in Photosynthesis and Respiration. Dordrecht: Springer 201–231. [CrossRef] [Google Scholar]
  • Horppila J, Pippingsköld E, Estlander S. 2022. Effects of water colour on the pigment content of a floating-leaved macrophyte—implications of lake brownification. Aquat Bot 181: 10354. [Google Scholar]
  • Horppila J, Keskinen S, Nurmesniemi M, Nurminen L, Pippingsköld E, Rajala S, Sainio K, Estlander S. 2023. Factors behind the threshold‐like changes in lake ecosystems along a water colour gradient: The effects of dissolved organic carbon and iron on euphotic depth, mixing depth and phytoplankton biomass. Freshwater Biol 68: 1031–1040. [CrossRef] [Google Scholar]
  • Horppila J, Nurminen L, Rajala S, Estlander S. 2024. Making waves: the sensitivity of lakes to brownification and issues of concern in ecological status assessment. Water Res 249: 120964. [CrossRef] [PubMed] [Google Scholar]
  • Klimenko EN. 2012. Structural and functional aspects of the Nuphar lutea (L.) Smith heterophylly: ultrastructure and photosynthesis. Cytol Genet 46: 272–279. [CrossRef] [Google Scholar]
  • Kok CJ, Van der Velde G, Landsbergen KM. 1990. Production, nutrient dynamics and initial decomposition of floating leaves of Nymphaea alba L. and Nuphar lutea (L.) Smith (Nymphaeaceae) in alkaline and acid waters. Biogeochemistry 11: 235–250. [CrossRef] [Google Scholar]
  • Kritzberg ES, Ekström SM. 2012. Increasing iron concentrations in surface waters − a factor behind brownification? Biogeosciences 9: 1465–1478. [CrossRef] [Google Scholar]
  • Kuglerová L, Hasselquist EM, Sponseller RA, Muotka T, Hallsby G, Laudon H. 2021. Multiple stressors in small streams in the forestry context of Fennoscandia: the effects in time and space. Sci Total Environ 756: 143521. [CrossRef] [PubMed] [Google Scholar]
  • Kume A, Akitsu T, Nasahara KN. 2018. Why is chlorophyll b only used in light-harvesting systems? J Plant Res 131: 961–972. [CrossRef] [PubMed] [Google Scholar]
  • Li L, Zheng B, Liu L. 2010. Biomonitoring and bioindicators used for river ecosystems: Definitions, approaches and trends. Proc Environ Sci 2: 1510–1524. [CrossRef] [Google Scholar]
  • Lichtenthaler HK, Wellburn AR. 1983. Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem Soc Trans 603: 591–592. [CrossRef] [Google Scholar]
  • Lyche-Solheim A, Feld CK, Birk S, Phillips G, Carvalho L, Morabito G, Mischke U, Willby N, Søndergaard M, Hellsten S, Kolada A, Mjelde M, Böhmer J, Miler O, Pusch M, Argillier C, Jeppesen E, Lauridsen TL, Poikane S. 2013. Ecological status assessment of European lakes: a comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia 704: 57–74. [CrossRef] [Google Scholar]
  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B, Kopácek J, Vesely J. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537–540. [CrossRef] [PubMed] [Google Scholar]
  • Montuelle B, Dorigo U, Bérard A, Volat B, Bouchez A, Tlili A, Gouy V, Pesce S. 2010. The periphyton as a multimetric bioindicator for assessing the impact of land use on rivers: An overview of the Ardières-Morcille experimental watershed (France). Hydrobiologia 657: 123–141. [CrossRef] [Google Scholar]
  • Penning WE, Dudley B, Mjelde M, Hellsten S, Hanganu J, Kolada A, Van den Berg F M, Poikane S, Phillips G, Willby N, Ecke F. 2008. Using aquatic macrophyte community indices to define the ecological status of European lakes. Aquat Ecol 42: 253–264. [CrossRef] [Google Scholar]
  • Petrin Z, Laudon H, Malmqvist B. 2007. Does freshwater macroinvertebrate diversity along a pH‐gradient reflect adaptation to low pH? Freshwater Biol 52: 2172–2183. [CrossRef] [Google Scholar]
  • Pintado A, Vallandares F, Sancho LG. 1997. Exploring phenotypic plasticity in the lichen Ramalina capitata: morphology, water relations and chlorophyll content in North- and South-facing populations. Ann Bot 80: 345–353. [CrossRef] [Google Scholar]
  • Poikane S, Portielje R, Denys L, Elferts D, Kelly M, Kolada A, Mäemets H, Phillips G, Søndergaard M, Willby N, Van den Berg F MS. 2018. Macrophyte assessment in European lakes: Diverse approaches but convergent views of ‘good’ ecological status. Ecol Indic 94: 185–197. [CrossRef] [PubMed] [Google Scholar]
  • Proctor MC, Smirnoff N. 2011. Ecophysiology of photosynthesis in bryophytes: major roles for oxygen photoreduction and non-photochemical quenching? Physiol Plant 141: 130–140. [CrossRef] [PubMed] [Google Scholar]
  • Rajala S, Estlander S, Nurminen L, Sainio K, Horppila J. 2024. Seasonal fluctuations in pigment content of macrophytes: implications for monitoring brownification. Hydrobiologia 851: 633–648. [CrossRef] [Google Scholar]
  • Rajala S, Estlander S, Nurminen L, Horppila J. 2025. Spatial and temporal variation of Nuphar lutea pigment content in small boreal lakes: effect of water colour and phosphorus concentration. Hydrobiologia 852: 443–456. [CrossRef] [Google Scholar]
  • Räike A, Kortelainen P, Mattsson T, Thomas DN. 2016. Long-term trends (1975-2014) in the concentrations and export of carbon from Finnish rivers to the Baltic Sea: organic and inorganic components compared. Aquat Sci 78: 505–523. [CrossRef] [Google Scholar]
  • Sabater S, Guasch H, Ricart M, Romaní A, Vidal G, Klünder C, Schmitt-Jansen M. 2007. Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal Bioanal Chem 387: 1425–1434. [CrossRef] [PubMed] [Google Scholar]
  • Scheffer M. 1998. The Ecology of Shallow Lakes. London: Chapman and Hall. [Google Scholar]
  • Sepp M, Kõiv T, Nõges P, Nõges T. 2018. Do organic matter metrics included in lake surveillance monitoring in Europe provide a broad picture of brownification and enrichment with oxygen consuming substances? Sci Total Environ 610: 1288–1297. [CrossRef] [PubMed] [Google Scholar]
  • Thrane JE, Hessen DO, Andersen T. 2014. The absorption of light in lakes: negative impact of dissolved organic carbon on primary productivity. Ecosystems 17: 1040–1052. [CrossRef] [Google Scholar]
  • Tolkkinen MJ, Heino J, Ahonen SH, Lehosmaa K, Mykrä H. 2020. Streams and riparian forests depend on each other: A review with a special focus on microbes. For Ecol Manage 462: 117962. [CrossRef] [Google Scholar]
  • Turunen J, Aroviita J. 2024. Influence of water color and catchment lake cover on stream macroinvertebrate communities: ecological insights into browning effects. Water Res 250: 121048. [CrossRef] [PubMed] [Google Scholar]
  • Valladares F, Niinemets Ü. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39: 237–257. [CrossRef] [Google Scholar]
  • Villares R, Real C, Vázquez MD. 2024. Influence of storage method on the content of photosynthetic pigments of the aquatic moss Fontinalis antipyretica. Hydrobiologia 851: 4167–4176. [CrossRef] [Google Scholar]
  • Vuori KM, Muotka T. 1999. Benthic communities in humic streams. In: Keskitalo J, Eloranta P, ed. Limnology of Humic Waters. Leiden: Backhuys Publishers, 193–207 [Google Scholar]
  • Weyhenmeyer GA, Karlsson J. 2009. Nonlinear response of dissolved organic carbon concentrations in boreal lakes to increasing temperatures. Limnol Oceanogr 54: 2513–2519. [CrossRef] [Google Scholar]
  • Weyhenmeyer GA, Müller RA, Norman M, Tranvik LJ. 2016. Sensitivity of freshwaters to browning in response to future climate change. Clim Change 134: 225–239. [CrossRef] [Google Scholar]
  • Wood JP, Bachelard EP. 1969. Variations in chlorophyll concentration in the foliage of radiata pine. Aust For 33: 119–128. [CrossRef] [Google Scholar]
  • Yamazaki J, Suzuki T, Maruta E, Kamimura Y. 2005. The stoichiometry and antenna size of the two photosystems in marine green algae, Bryopsis maxima and Ulva pertusa, in relation to the light environment of their natural habitat. J Exp Bot 56: 1517–1523. [CrossRef] [PubMed] [Google Scholar]
  • Zhao X, Jia T, Hu X. 2020. HCAR is a limitation factor for chlorophyll cycle and chlorophyll b degradation in chlorophyll-b-overproducing plants. Biomolecules 10. [PubMed] [Google Scholar]
  • Xiao YH, Sara-Aho T, Hartikainen H, Vähätalo AV. 2013. Contribution of ferric iron to light absorption by chromophoric dissolved organic matter. Limnol Oceanogr 58: 653–662. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.