Conservation genetics
Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 426, 2025
Conservation genetics
Article Number 20
Number of page(s) 19
DOI https://doi.org/10.1051/kmae/2025015
Published online 01 July 2025
  • Arndt-Dietrich I. 2002. Gewässergütebericht 2001 Nordrhein-Westfalen − Berichtszeitraum 1995-2000, Landesumweltamt Nordrhein-Westfalen, Essen, 273 p. [Google Scholar]
  • Artaev ON, Bolotovskiy AA, Turbanov IS, Gandlin AA, Kutuzov AV, Levina MA, Melentev DA, Pozdeev IV, Borisov MY, Levin BA. 2024a. Forgotten for two centuries: redescription of Phoxinus isetensis (Georgi, 1775) (Cypriniformes, Leuciscidae) − the most widespread minnow in Europe. Zoosyst Evol 100: 1155–1173. [Google Scholar]
  • Artaev ON, Turbanov IS, Bolotovskiy AA, Gandlin AA, Levin BA. 2024b. Taxonomic revision of Phoxinus minnows (Leuciscidae) from Caucasus, with description of a new narrow-ranged endemic species. Zoosyst Evol 100: 291–308. [Google Scholar]
  • Astrin JJ, Stüben PE. 2008. Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera: Curculionidae). Invertebr Syst 22: 503–522. [Google Scholar]
  • Ayres DR, Zaremba K, Sloop CM, Strong DR. 2008. Sexual reproduction of cordgrass hybrids (Spartina foliosa x alterniflora) invading tidal marshes in San Francisco Bay. Divers Distrib 14: 187–195. [Google Scholar]
  • Balon EK, Crawford SS, Lelek A. 1986. Fish communities of the upper Danube River (Germany, Austria) prior to the new Rhein-Main-Donau connection. Environ Biol Fishes 15, 243–271. [Google Scholar]
  • Bandelt H, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48. [Google Scholar]
  • Baranov VY. 2020. Body Shape Variability of the Minnow Phoxinus phoxinus (Linnaeus, 1758) (Cyprinidae, Actinopterygii) in Large and Small Watercourses of the Sylva River Basin (Middle Urals). Biol Bull Russ Acad Sci 47: 1285–1292. [Google Scholar]
  • Barton NH, Hewitt GM. 1985. Analysis of Hybrid Zones. Annu Rev Ecol Evol Syst 16: 113–148. [Google Scholar]
  • Bayçelebi E, Aksu İ, Turan D. 2024. Description of a new species of Phoxinus from the Ergene River (Aegean Sea Basin) in Türkiye (Actinopterygii, Leuciscidae). Zoosyst Evol 100: 101–110. [Google Scholar]
  • Behrens-Chapuis S, Herder F, Geiger MF. 2021. Adding DNA barcoding to stream monitoring protocols − What's the additional value and congruence between morphological and molecular identification approaches? PLOS ONE 16: e0244598. [Google Scholar]
  • Benson AJ. 1999. Documenting over a century of aquatic introductions in the United States., In Claudi R, Leach JH eds. Nonindigenous Freshwater Organisms: Vectors, Biology, and Impacts. Boca Raton, FL: CRC Press LLC, pp. 1–31. [Google Scholar]
  • Bennett KD. 1997. Evolution and Ecology: The Pace of Life. Cambridge University Press. [Google Scholar]
  • Berg LS. 1948. Ryby presnykh vod SSSR i sopredel'nykh stran [freshwater fishes of the U.S.S.R. and adjacent countries], Vol. 1, Izdatelstvo Akademii Nauk SSSR, Moscow & Leningrad, 466 p. [Google Scholar]
  • Bernery C, Bellard C, Courchamp F, Brosse S, Gozlan RE, Jarić I, Teletchea F, Leroy B. 2022. Freshwater fish invasions: a comprehensive review. Annu Rev Ecol Evol Syst 53: 427–456. [CrossRef] [Google Scholar]
  • Bianco PG. 2014. An update on the status of native and exotic freshwater fishes of Italy. J Appl Ichthyol 30: 62–77. [Google Scholar]
  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I. 2007. Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22: 148–155. [Google Scholar]
  • Biedermann R, Finch OD. 2010. Analyse der räumlichen und zeitlichen Verbreitung der Elritze in Nordrhein-Westfalen, Aqua Ecology, Oldenburg, 102 p. [Google Scholar]
  • Birkmann J, Schüttrumpf H, Handmer J, Thieken A, Kuhlicke C, Truedinger A, Sauter H, Klopries EM, Greiving S, Jamshed A, Merz B, Solecki W, Kirschbauer L. 2023. Strengthening resilience in reconstruction after extreme events − Insights from flood affected communities in Germany. Int J Disaster Risk Reduct 96: 103965. [Google Scholar]
  • Blanck A, Tedesco PA, Lamouroux N. 2007. Relationships between life-history strategies of European freshwater fish species and their habitat preferences. Freshw Biol 52: 843–859. [Google Scholar]
  • Bless R. 1992. Einsichten in die Ökologie der Elritze Phoxinus phoxinus (L.) − praktische Grundlagen zum Schutz einer gefährdeten Fischart, Forschungsanstalt für Naturschutz und Landschaftsökologie, Bonn, 57 p. [Google Scholar]
  • Bogutskaya NG, Naseka AM. 2004. Catalogue of agnathans and fishes of fresh and brackish waters of Russia with comments on nomenclature and taxonomy. KMK Scientific Press Ltd., Moscow, 389 p. [Google Scholar]
  • Bogutskaya NG, Jelić D, Vucić M, Jelić M, Diripasko OA, Stefanov T, Klobučar G. 2020. Description of a new species of Phoxinus from the upper Krka River (Adriatic Basin) in Croatia (Actinopterygii: Leuciscidae), first discovered as a molecular clade. J Fish Biol 96: 378–393. [Google Scholar]
  • Bogutskaya NG, Diripasko OA, Palandačić A. 2023. Novel data support validity of Phoxinus chrysoprasius (Pallas, 1814) (Actinopterygii, Leuciscidae). Eur J Taxon 861: 1–20. [Google Scholar]
  • Borchard B, Brenner T, Steinberg L. 1986. Fische in Nordrhein-Westfalen, Ministerium für Umwelt, Raumordnung und Landwirtschaft des Landes Nordrhein-Westfalen, Düsseldorf, 127 p. [Google Scholar]
  • Borgstrøm R. 1973. Spredning av ørekyte. Jakt-Fiske-Friluftsliv 102, 28–29. [Google Scholar]
  • Bourret SL, Kovach RP, Cline TJ, Strait JT, Muhlfeld CC. 2022. High dispersal rates in hybrids drive expansion of maladaptive hybridization. Proc R Soc B Biol Sci 289: 20221813. [Google Scholar]
  • Brasseur MV, Astrin JJ, Geiger MF, Mayer C. 2023. MitoGeneExtractor: Efficient extraction of mitochondrial genes from next-generation sequencing libraries. Methods Ecol Evol 14: 1017–1024. [Google Scholar]
  • Britton JR. 2023. Contemporary perspectives on the ecological impacts of invasive freshwater fishes. J Fish Biol 103: 752–764. [Google Scholar]
  • Buj I, Marčić Z, Ćaleta M, Šanda R, Geiger MF, Freyhof J, Machordom A, Vukić J. 2017. Ancient connections among the European rivers and watersheds revealed from the evolutionary history of the genus Telestes (Actinopterygii; Cypriniformes). PLoS ONE 12: e0187366. [Google Scholar]
  • Byers JE, Wright JT, Gribben PE. 2010. Variable direct and indirect effects of a habitat-modifying invasive species on mortality of native fauna. Ecology 91: 1787–1798. [Google Scholar]
  • Cambray JA. 2003. Impact on indigenous species biodiversity caused by the globalisation of alien recreational freshwater fisheries. Hydrobiologia 500: 217–230. [Google Scholar]
  • Canestrini G. 1864. Sul Phoxinus laevis Ag. In: Canestrini G, ed. Archivio per La Zoologia, l'anatomia e La Fisiologia, Museo di Storia naturale della R. Università di Modena, Modena 307–308. [Google Scholar]
  • Carlton JT. 1996. Biological Invasions and Cryptogenic Species. Ecology 77: 1653–1655. [Google Scholar]
  • Casimiro ACR, Garcia DAZ, Vidotto-Magnoni AP, Britton JR, Agostinho AA, Almeida FSD, Orsi ML. 2018. Escapes of non-native fish from flooded aquaculture facilities: the case of Paranapanema River, southern Brazil. Zoologia 35: 1–6. [Google Scholar]
  • Castillo JM, Ayres DR, Leira-Doce P, Bailey J, Blum M, Strong DR, Luque T, Figueroa E. 2010. The production of hybrids with high ecological amplitude between exotic Spartina densiflora and native S. maritima in the Iberian Peninsula. Divers Distrib 16: 547–558. [Google Scholar]
  • Castorani MCN, Hovel KA. 2015. Invasive prey indirectly increase predation on their native competitors. Ecology 96: 1911–1922. [Google Scholar]
  • Chan FT, Beatty SJ, Gilles Jr AS, Hill JE, Kozic S, Luo D, Morgan DL, Pavia Jr RTB, Therriault TW, Verreycken H, Vilizzi L, Wei H, Yeo DCJ, Yiwen Z, Zięba G, Copp GH. 2019. Leaving the fishbowl: the ornamental trade as a global vector for freshwater fish invasions. Aquat Ecosyst Health Manag 22: 417–439. [Google Scholar]
  • Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, Savolainen V. 2005. Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc B Biol Sci 360: 1889–1895. [Google Scholar]
  • Chen X. 1988. A new species of Phoxinus from China (Pisces, Cypriniformes). Sinozoologia 6: 35–38. [Google Scholar]
  • Clavero M, García-Berthou E. 2005. Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20: 110. [Google Scholar]
  • Collado GA. 2017. Unraveling cryptic invasion of a freshwater snail in Chile based on molecular and morphological data. Biodivers Conserv 26: 567–578. [Google Scholar]
  • Collin H, Fumagalli L. 2015. The role of geography and ecology in shaping repeated patterns of morphological and genetic differentiation between European minnows (Phoxinus phoxinus) from the Pyrenees and the Alps. Biol J Linn Soc 116: 691–703. [Google Scholar]
  • Cornelius C. 1865. Zug- und Wander-Fische In: Cornelius C, ed. Die Zug- und Wanderthiere aller Thierklassen, Julius Springer, Berlin, 151–209. [Google Scholar]
  • Corral-Lou A, Perea S, Aparicio E, Doadrio I. 2019. Phylogeography and species delineation of the genus Phoxinus Rafinesque, 1820 (Actinopterygii: Leuciscidae) in the Iberian Peninsula. J Zool Syst Evol Res 57: 926–941. [Google Scholar]
  • Degnan JH, Salter LA. 2005. Gene tree distributions under the coalescent process. Evolution 59: 24–37. [Google Scholar]
  • De Santis V, Delmastro GB, Vanetti I, Britton JR, Zaccara S. 2021. Species composition of introduced and natural minnow populations of the Phoxinus cryptic complex in the westernmost part of the Po River Basin (north Italy). Biol Invasions 23: 657–668. [Google Scholar]
  • Denys GPJ, Manne S. 2019. First record of Phoxinus csikii Hankó, 1922 (Actinopterygii, Cypriniformes) in France. Cybium 43: 199–202. [Google Scholar]
  • Denys GPJ, Dettai A, Persat H, Daszkiewicz P, Hautecœur M, Keith P. 2020. Revision of Phoxinus in France with the description of two new species (Teleostei, Leuciscidae). Cybium 44: 205–237. [Google Scholar]
  • Didier J, Kestemont P. 1996. Relationships between mesohabitats, ichthyological communities and IBI metrics adapted to a European river basin (The Meuse, Belgium). Hydrobiologia 341: 133–144. [Google Scholar]
  • Doherty TS, Glen AS, Nimmo DG, Ritchie EG, Dickman CR. 2016. Invasive predators and global biodiversity loss. Proc Natl Acad Sci 113: 11261–11265. [Google Scholar]
  • Dyldin YV, Orlov AM. 2016. Ichthyofauna of fresh and brackish waters of Sakhalin Island: An annotated list with taxonomic comments: 2. Cyprinidae-Salmonidae families. J Ichthyol 56: 656–693. [Google Scholar]
  • Dyldin YV, Orlov AM, Hanel L, Romanov VI, Fricke R, Vasil'eva ED. 2023. Ichthyofauna of the Fresh and Brackish Waters of Russia and Adjacent Areas: Annotated List with Taxonomic Comments. 2. Order Cypriniformes, Suborders Catostomoidei, Cobitoidei and Cyprinoidei. J Ichthyol 63: 636–686. [Google Scholar]
  • Esposito A, Denys GPJ, Haÿ V, Godeaux Q, Foata J, Quilichini Y. 2024. Multiple introduction pathways of non-native Phoxinus minnows (Teleostei: Leuciscidae) in Corsica revealed by its hidden diversity and their parasites. Biol Invasions 26: 2453–2474. [Google Scholar]
  • Feulner PGD, Kirschbaum F, Schugardt C, Ketmaier V, Tiedemann R. 2006. Electrophysiological and molecular genetic evidence for sympatrically occuring cryptic species in African weakly electric fishes (Teleostei: Mormyridae: Campylomormyrus). Mol Phylogenet Evol 39: 198–208. [Google Scholar]
  • Freyhof J. 1998. Die Fische und Neunaugen der Sieg in den Grenzen von Nordrhein-Westfalen. Decheniana 151: 183–194. [Google Scholar]
  • Freyhof J, Bowler D, Broghammer T, Friedrichs-Manthey M, Heinze S, Wolter C. 2023. Rote Liste und Gesamtartenliste der sich im Süßwasser reproduzierenden Fische und Neunaugen (Pisces et Cyclostomata) Deutschlands, Bundesamt für Natur, Bonn, 63 p. [Google Scholar]
  • Frost WE. 1943. The Natural History of the Minnow, Phoxinus phoxinus. J Anim Ecol 12: 139–162. [Google Scholar]
  • Funk DJ, Omland KE. 2003. Species-Level Paraphyly and Polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34: 397–423. [Google Scholar]
  • Fong JJ, Blom MPK, Aowphol A, McGuire JA, Sutcharit C, Soltis PS. 2023. Editorial: Recent advances in museomics: revolutionizing biodiversity research. Front Ecol Evol 11: 427–456. [Google Scholar]
  • Garcia-Raventós A, Martins FMS., Teixeira A, Sousa R, Froufe E, Varandas S, Lopes-Lima M, Beja P, Filipe AF. 2020. Origin and history of Phoxinus (Cyprinidae) introductions in the Douro Basin (Iberian Peninsula): an update inferred from genetic data. Biol Invasions 22: 2409–2419. [Google Scholar]
  • Gellert G. 2001a. Die Gewässergüteentwicklung der unteren Sieg, In: Seuter S, ed. Gewässergütebericht 2000–30 Jahre Biologische Gewässerüberwachung in Nordrhein-Westfalen, Landesumweltamt Nordrhein-Westfalen, Essen, 84–86. [Google Scholar]
  • Gellert G. 2001b. Gewässergüte und ökologischer Zustand der Agger. In: Seuter S, ed. Gewässergütebericht 2000–30 Jahre Biologische Gewässerüberwachung in Nordrhein-Westfalen, Landesumweltamt Nordrhein-Westfalen, Essen, 87–90. [Google Scholar]
  • Glotzbecker GJ, Walters DM, Blum MJ. 2016. Rapid movement and instability of an invasive hybrid swarm. Evol Appl 9: 741–755. [Google Scholar]
  • Gozlan RE, Britton JR, Cowx I, Copp GH. 2010. Current knowledge on non-native freshwater fish introductions. J Fish Biol 76: 751–786. [Google Scholar]
  • Gu TT, Wu H, Yang F, Gaubert P, Heighton SP, Fu Y, Liu K, Luo SJ, Zhang HR, Hu JY, Yu L. 2023. Genomic analysis reveals a cryptic pangolin species. Proc Natl Acad Sci 120: e2304096120. [Google Scholar]
  • Harrison RG. 1993. Hybrids and Hybrid Zones: Historical Perspective In: Harrison RG ed. Hybrid Zones and the Evolutionary Process. Oxford: Oxford University Press, 3–12. [Google Scholar]
  • Hahn EE, Alexander MR, Grealy A, Stiller J, Gardiner DM, Holleley CE. 2022. Unlocking inaccessible historical genomes preserved in formalin. Mol Ecol Resour 22: 2130–2147. [Google Scholar]
  • Hebert PDN, Cywinska A, Ball SL, deWaard JR. 2003. Biological identifications through DNA barcodes. Proc Biol Sci 270: 313–321. [Google Scholar]
  • Heckel J, Kner R. 1858. Die Süsswasserfische der Österreichischen Monarchie mit Rücksicht auf die angrenzenden Länder. Verlag Wilhelm Engelmann, Leipzig, 388 p. [Google Scholar]
  • Heggenes J, Traaen T. 1988. Downstream migration and critical water velocities in stream channels for fry of four salmonid species. J Fish Biol 32: 717–727. [Google Scholar]
  • Heino J, Melo AS, Siqueira T, Soininen J, Valanko S, Bini LM. 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw Biol 60: 845–869. [CrossRef] [Google Scholar]
  • Hensel MJS, Silliman BR, van de Koppel J, Hensel E, Sharp SJ, Crotty SM, Byrnes JEK. 2021. A large invasive consumer reduces coastal ecosystem resilience by disabling positive species interactions. Nat Commun 12: 6290. [Google Scholar]
  • Herrera ND, Bell KC, Callahan CM, Nordquist E, Sarver BAJ, Sullivan J, Demboski JR, Good JM. 2022. Genomic resolution of cryptic species diversity in chipmunks. Evolution 76: 2004–2019. [Google Scholar]
  • Hewitt GM. 1988. Hybrid zones-natural laboratories for evolutionary studies. Trends Ecol Evol 3: 158–167. [Google Scholar]
  • Hewitt GM. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci 359: 183–195. [Google Scholar]
  • Hewitt GM. 1999. Post-glacial re-colonization of European biota. Biol J Linn Soc 68: 87–112. [Google Scholar]
  • Hu Y, Thapa A, Fan H, Ma T, Wu Q, Ma S, Zhang D, Wang B, Li M, Yan L, Wei F. 2020. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci Adv 6: eaax 5751. [Google Scholar]
  • Jansen W, Kappus B, Böhmer J, Beiter T. 1999. Fish communities and migrations in the vicinity of fishways in a regulated river (Enz, Baden-Württemberg, Germany). Limnologica 29: 425–435. [Google Scholar]
  • Jia Y, Kennard MJ, Liu Y, Sui X, Chen Y, Li K, Wang G, Chen Y. 2019. Understanding invasion success of Pseudorasbora parva in the Qinghai-Tibetan Plateau: Insights from life-history and environmental filters. Sci Total Environ 694: 133739. [Google Scholar]
  • Jones PE, Champneys T, Vevers J, Börger L, Svendsen JC, Consuegra S, Jones J, Garcia de Leaniz C. 2021. Selective effects of small barriers on river-resident fish. J Appl Ecol 58: 1487–1498. [Google Scholar]
  • Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780. [Google Scholar]
  • Kirschbaum CL. 1865. Die Reptilien und Fische des Herzogthums Nassau. Verzeichniß und Bestimmungstabelle, In: Kirschbaum, CL, ed. Jahrbücher Des Vereins Für Naturkunde Im Herzogthum Nassau, Julius Riedner Verlagshandlung, Wiesbaden, 77–122. [Google Scholar]
  • Klinger H. 2001. Fische unserer Bäche und Flüsse − Aktuelle Verbreitung, Entwicklungstendenzen, Schutzkonzepte für Fischlebensräume in Nordrhein-Westfalen, Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen, Düsseldorf, 200 p. [Google Scholar]
  • Knebelsberger T, Dunz AR, Neumann D, Geiger MF. 2015. Molecular diversity of Germany's freshwater fishes and lampreys assessed by DNA barcoding. Mol Ecol Resour 15: 562–572. [Google Scholar]
  • Kottelat M. 1997. European freshwater fishes. An heuristic checklist of the freshwater fishes in Europe (exclusive of former Ussr), with an introduction for non-systematists and comments on nomenclature and conservation. Biologia 51: 1–271. [Google Scholar]
  • Kottelat M. 2007. Three new species of Phoxinus from Greece and southern France (Teleostei: Cyprinidae). Ichthyol Explor Freshw 18: 145–162. [Google Scholar]
  • Kottelat M, Freyhof J. 2007. Handbook of European Freshwater Fishes, Kottelat, Cornol, and Freyhof, Berlin, 646 p. [Google Scholar]
  • Kusznierz J, Tagayev D, Sienkiewicz T, Paśko Ł. 2023. Molecular and osteological verification of the taxonomic status of Phoxinus sedelnikowi (Berg, 1908) (Teleostei: Leuciscidae). Eur Zool J 90: 113–125. [Google Scholar]
  • Landois H, Rade E, Westhoff F. 1892. Westfalens Fische In: Landois H, ed. Westfalens Tierleben: Die Reptilien, Amphibien und Fische in Wort und Bild, Verlag Ferdinand Schöningh, Paderborn, 161–432. [Google Scholar]
  • Leibold MA, Loeuille N. 2015. Species sorting and patch dynamics in harlequin metacommunities affect the relative importance of environment and space. Ecology 96: 3227–3233. [Google Scholar]
  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7: 601–613. [Google Scholar]
  • Leigh JW, Bryant D. 2015. PopART: Full-feature software for haplotype network construction. Methods Ecol Evol 6: 1110–1116. [Google Scholar]
  • Linders TEW, Schaffner U, Eschen R, Abebe A, Choge SK, Nigatu L, Mbaabu PR, Shiferaw H, Allan E. 2019. Direct and indirect effects of invasive species: Biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. J Ecol 107: 2660–2672. [Google Scholar]
  • Linnaeus C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, Editio decima, reformata [10th revised edition], Impensis Direct, Laurentii Salvii, Holmiae [= Stockholm], 824 p. [Google Scholar]
  • Maceda-Veiga A, Escribano-Alacid J, de Sostoa A, García-Berthou E. 2013. The aquarium trade as a potential source of fish introductions in southwestern Europe. Biol Invasions 15: 2707–2716. [Google Scholar]
  • Maddison WP. 1997. Gene trees in species trees. Syst Biol 46: 523–536. [Google Scholar]
  • Malde K, Seliussen BB, Quintela M, Dahle G, Besnier F, Skaug HJ, Øien N, Solvang HK, Haug T, Skern-Mauritzen R, Kanda N, Pastene LA, Jonassen I, Glover KA. 2017. Whole genome resequencing reveals diagnostic markers for investigating global migration and hybridization between minke whale species. BMC Genom 18: 76. [Google Scholar]
  • Martin AP, Bermingham E. 2000. Regional endemism and cryptic species revealed by molecular and morphological analysis of a widespread species of Neotropical catfish. Proc R Soc Lond B Biol Sci 267: 1135–1141. [Google Scholar]
  • McEachran MC, Hofelich Mohr A, Lindsay T, Fulton DC, Phelps NBD. 2022. Patterns of Live Baitfish Use and Release among Recreational Anglers in a Regulated Landscape. North Am J Fish Manag 42: 295–306. [Google Scholar]
  • Milardi M, Aschonitis V, Gavioli A, Lanzoni M, Fano EA, Castaldelli G. 2018. Run to the hills: exotic fish invasions and water quality degradation drive native fish to higher altitudes. Sci Total Environ 624: 1325–1335. [Google Scholar]
  • Miró A, Ventura M. 2015. Evidence of exotic trout mediated minnow invasion in Pyrenean high mountain lakes. Biol Invasions 17: 791–803. [Google Scholar]
  • Miró A, Sabás I, Ventura M. 2018. Large negative effect of non-native trout and minnows on Pyrenean lake amphibians. Biol Conserv 218: 144–153. [Google Scholar]
  • Mohr S, Ehret U, Kunz M, Ludwig P, Caldas-Alvarez A, Daniell JE, Ehmele F, Feldmann H, Franca MJ, Gattke C, Hundhausen M, Knippertz P, Küpfer K, Mühr B, Pinto JG, Quinting J, Schäfer AM, Scheibel M, Seidel F, Wisotzky C. 2023. A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe − Part 1: Event description and analysis. Nat Hazards Earth Syst Sci 23: 525–551. [Google Scholar]
  • Monaghan MT, Balke M, Gregory TR, Vogler AP. 2005. DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. Philos Trans R Soc B Biol Sci 360: 1925–1933. [Google Scholar]
  • Morais P, Reichard M. 2018. Cryptic invasions: a review. Sci Total Environ 613-614: 1438–1448. [Google Scholar]
  • Moritz C, Cicero C. 2004. DNA Barcoding: Promise and Pitfalls. PLOS Biol 2: e354. [Google Scholar]
  • Museth J, Hesthagen T, Sandlund OT, Thorstad EB, Ugedal O. 2007. The history of the minnow Phoxinus phoxinus (L.) in Norway: from harmless species to pest. J Fish Biol 71: 184–195. [Google Scholar]
  • Museth J, Borgstrøm R, Brittain JE. 2010. Diet overlap between introduced European minnow (Phoxinus phoxinus) and young brown trout (Salmo trutta) in the lake, Øvre Heimdalsvatn: a result of abundant resources or forced niche overlap? Hydrobiologia 642: 93–100. [Google Scholar]
  • Nabholz B. 2024. Incomplete lineage sorting explains the low performance of DNA barcoding in a radiation of four species of Western European grasshoppers (Orthoptera: Acrididae: Chorthippus). Biol J Linn Soc 141: 33–50. [Google Scholar]
  • Nitsche H, Hein W. 1909. Die Süsswasserfische Deutschlands ihre Kennzeichen, Fortpflanzung, Verbreitung und wirtschaftliche Bedeutung, 4th ed, Verlag des Deutschen Fischereivereins, Berlin, 82 p. [Google Scholar]
  • NZO [Gesellschaft für landschaftsökologische Planung, Berwertung und Dokumentation m.b.h.], IFÖ [Institut für angewandte Ökologie]. 2007. Historische Verbreitungskarten mit Erläuterungen, Erarbeitung von Instrumenten zur gewässerökologischen Beurteilung der Fischfauna, Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes NRW, Albaum, 89 p. [Google Scholar]
  • Oberdorff T, Guilbert E, Lucchetta JC. 1993. Patterns of fish species richness in the Seine River basin, France. Hydrobiologia 259: 157–167. [Google Scholar]
  • Oriowo TO, Chrysostomakis I, Martin S, Kukowka S, Brown T, Winkler S, Myers EW, Böhne A, Stange M. 2025. A chromosome-level, haplotype-resolved genome assembly and annotation for the Eurasian minnow (Leuciscidae: Phoxinus phoxinus) provide evidence of haplotype diversity. GigaScience 14: giae116. [Google Scholar]
  • Palandačić A, Bravničar J, Zupančič P, Šanda R, Snoj A. 2015. Molecular data suggest a multispecies complex of Phoxinus (Cyprinidae) in the Western Balkan Peninsula. Mol Phylogenet Evol 92: 118–123. [Google Scholar]
  • Palandačić A, Diripasko OA, Kirchner S, Stefanov T, Bogutskaya NG. 2024. An integrative approach highlights the discrepancy in the genetic, phenotypic, and presumptive taxonomic structure of (Actinopterygii, Leuciscidae, Phoxininae) in Bulgaria. J Fish Biol 105: 214–238. [Google Scholar]
  • Palandačić A, Kruckenhauser L, Ahnelt H, Mikschi E. 2020. European minnows through time: museum collections aid genetic assessment of species introductions in freshwater fishes (Cyprinidae: Phoxinus species complex). Heredity 124: 410–422. [Google Scholar]
  • Palandačić A, Naseka A, Ramler D, Ahnelt H. 2017. Contrasting morphology with molecular data: an approach to revision of species complexes based on the example of European Phoxinus (Cyprinidae). BMC Evol Biol 17: 184. [Google Scholar]
  • Palandačić A, Witman K, Spikmans F. 2022. Molecular analysis reveals multiple native and alien Phoxinus species (Leusciscidae) in the Netherlands and Belgium. Biol Invasions 24: 2273–2283. [Google Scholar]
  • Perry WL, Lodge DM, Feder JL. 2002. Importance of hybridization between indigenous and nonindigenous freshwater species: an overlooked threat to North American biodiversity. Syst Biol 51: 255–275. [Google Scholar]
  • Petzold A, Hassanin A. 2020. A comparative approach for species delimitation based on multiple methods of multi-locus DNA sequence analysis: a case study of the genus Giraffa (Mammalia, Cetartiodactyla). PLoS One 15: e0217956. [Google Scholar]
  • Piria M, Simonović P, Kalogianni E, Vardakas L, Koutsikos N, Zanella D, Ristovska M, Apostolou A, Adrović A, Mrdak D, Tarkan AS, Milošević D, Zanella LN, Bakiu R, Ekmekçi FG, Povž M, Korro K, Nikolić V, Škrijelj R, Kostov V, Gregori A, Joy MK. 2018. Alien freshwater fish species in the Balkans − Vectors and pathways of introduction. Fish Fish 19: 138–169. [Google Scholar]
  • Popp H, Lehr O. 2008. Renaturierungsprojekte in Hessen am Beispiel der Wisper und der Nidda − Versuch einer Erfolgsbewertung. Schrreihe Dtsch Rat Landespfl 81: 93–95. [Google Scholar]
  • Rahel FJ. 2004. Unauthorized fish introductions: fisheries management of the people, for the people, or by the people? Am Fish Soc Symp 44: 431–443. [Google Scholar]
  • Raj S, Kumar AB, Tharian J, Raghavan R. 2021. Illegal and unmanaged aquaculture, unregulated fisheries and extreme climatic events combine to trigger invasions in a global biodiversity hotspot. Biol Invasions 23: 2373–2380. [Google Scholar]
  • Ramler D, Palandačić A, Delmastro GB, Wanzenböck J, Ahnelt H. 2017. Morphological divergence of lake and stream Phoxinus of Northern Italy and the Danube basin based on geometric morphometric analysis. Ecol Evol 7: 572–584. [Google Scholar]
  • Ratnasingham S, Hebert PDN. 2007. BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol Ecol Notes 7: 355–364. [Google Scholar]
  • Reier S, Bogutskaya N, Palandačić A. 2022a. Comparative Phylogeography of Phoxinus, Delminichthys, Phoxinellus and Telestes in Dinaric Karst: Which Factors Have Influenced Their Current Distributions? Diversity 14: 526. [Google Scholar]
  • Reier S, Kruckenhauser L, Snoj A, Trontelj P, Palandačić A. 2022b. The minnow Phoxinus lumaireul (Leuciscidae) shifts the Adriatic-Black Sea basin divide in the north-western Dinaric Karst region. Ecohydrology 15: e2449. [Google Scholar]
  • Reifenrath J, Schmieds U. 2001. Erfolge der Gewässerüberwachung an der oberen Sieg. In: Arndt-Dietrich I, ed. Gewässergütebericht 2001 Nordrhein-Westfalen − Berichtszeitraum 1995-2000, Landesumweltamt Nordrhein-Westfalen, Essen 79–83. [Google Scholar]
  • Rodríguez CF, Bécares E, Fernández-Aláez M. 2003. Shift from clear to turbid phase in Lake Chozas (NW Spain) due to the introduction of American red swamp crayfish (Procambarus clarkii). Hydrobiologia 506: 421–426. [Google Scholar]
  • Rosenfield JA, Nolasco S, Lindauer S, Sandoval C, Kodric-Brown A, 2004. The Role of Hybrid Vigor in the Replacement of Pecos Pupfish by Its Hybrids with Sheepshead Minnow. Conserv Biol 18: 1589–1598. [Google Scholar]
  • Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Connor R, Funk K, Kelly C, Kim S, Madej T, Marchler-Bauer A, Lanczycki C, Lathrop S, Lu Z, Thibaud-Nissen F, Murphy T, Phan L, Skripchenko Y, Tse T, Wang J, Williams R, Trawick BW, Pruitt KD, Sherry ST. 2021. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 50: D20– D26. [Google Scholar]
  • Scharnweber K. 2020. Morphological and trophic divergence of lake and stream minnows (Phoxinus phoxinus). Ecol Evol 10: 8358–8367. [Google Scholar]
  • Schwevers U. 1990. Kartierung der Fischfaune im Gewässersystem der Kinzig. Verh Ges Ökol 19: 670–680. [Google Scholar]
  • Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M. 2013. Impacts of biological invasions: what's what and the way forward. Trends Ecol Evol 28: 58–66. [Google Scholar]
  • Sonnenberg R, Nolte AW, Tautz D. 2007. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Front Zool 4: 6. [Google Scholar]
  • Srivathsan A, Lee L, Katoh K, Hartop E, Kutty SN, Wong J, Yeo D, Meier R. 2021. ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biol 19: 217. [Google Scholar]
  • Srivathsan A, Feng V, Suárez D, Emerson B, Meier R. 2023. ONTbarcoder 2.0: rapid species discovery and identification with real-time barcoding facilitated by Oxford Nanopore R10. 4. Cladistics 40: 192–203. [Google Scholar]
  • Steinberg L, NZO [Gesellschaft für landschaftsökologische Planung, Berwertung und Dokumentation m.b.h.]. 1992. Fische unserer Bäche und Flüsse − Verbreitung, Gefährdung und Schutz in Nordrhein-Westfalen, Ministerium für Umwelt, Raumordnung und Landwirtschaft des Landes Nordrhein-Westfalen, Düsseldorf, 121 p. [Google Scholar]
  • Suh J, Albo-Timor A, Aparicio E, Buchaca T, Caner J, Osorio V, Rovira Q, Puig M, Rocaspana R, Sabás I, Tiberti R, Ventura M. 2023. Espècies de veró i variabilitat genètica al Parc Nacional i en altres àrees d'alta muntanya, Generalitat de Catalunya, Barcelona, 186 p. [Google Scholar]
  • Sundseth K. 2009a. Natura 2000 in the Atlantic Region. Publications Office of the European Union, Luxembourg, 11p. [Google Scholar]
  • Sundseth, K., 2009b. Natura 2000 in the Continental Region. Publications Office of the European Union, Luxembourg, 11 p. [Google Scholar]
  • Svirgsden R, Rohtla M, Albert A, Taal I, Saks L, Verliin A, Vetemaa M. 2018. Do Eurasian minnows (Phoxinus phoxinus L.) inhabiting brackish water enter fresh water to reproduce: Evidence from a study on otolith microchemistry. Ecol Freshw Fish 27: 89–97. [Google Scholar]
  • Tack E. 1941. Die Elritze (Phoxinus laevis), eine monographische Bearbeitung. Arch Hydrobiol 37: 321–425. [Google Scholar]
  • Tack E. 1972. Die Fische des südwestfälischen Berglandes mit Einschluß von Möhnetalsperre und Ruhr. Decheniana 125: 63–77. [Google Scholar]
  • Thompson LC, Cocherell SA, Chun SN, Cech JJ, Klimley AP. 2011. Longitudinal movement of fish in response to a single-day flow pulse. Environ Biol Fishes 90: 253–261. [Google Scholar]
  • Tiberti R, Buchaca T, Cruset Tonietti E, Iacobelli L, Maini M, Ribelli F, Pou Rovira Q, Ventura M. 2022. Minnow introductions in mountain lakes result in lower salmonid densities. Biol Invasions 24: 2285–2289. [Google Scholar]
  • Troschel FH. 1851. Ueber die Rümpchen. Verh Natur Ver Preuss Rheinl Westfal 8: 563–567. [Google Scholar]
  • Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML. 2000. Preparation of PCR-Quality Mouse Genomic DNA with Hot Sodium Hydroxide and Tris (HotSHOT). BioTechniques 29: 52–54. [Google Scholar]
  • Turan D, Bayçelebi E, Özuluğ M, Gaygusuz Ö, Aksu İ. 2023. Phoxinus abanticus, a new species from the Lake Abant drainage in Türkiye (Teleostei: Leuciscidae). J Fish Biol 102: 1157–1167. [Google Scholar]
  • Borne M. v. d. 1881. Die Fischerei-Verhältnisse des Deutschen Reiches, Oesterreich-Ungarns, der Schweiz und Luxemburgs, W. Moeser, Berlin, 304 p. [Google Scholar]
  • V. Holdt BM, Cahill JA, Fan Z, Gronau I, Robinson J, Pollinger JP, Shapiro B, Wall J, Wayne RK. 2016. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci Adv 2: e1501714. [Google Scholar]
  • von Siebold CTE. 1863. Die Süsswasserfische von Mitteleuropa, Engelmann, Leipzig, 430 p. [Google Scholar]
  • Vuataz L, Sartori M, Wagner A, Monaghan MT. 2011. Toward a DNA Taxonomy of Alpine Rhithrogena (Ephemeroptera: Heptageniidae) Using a Mixed Yule-Coalescent Analysis of Mitochondrial and Nuclear DNA. PLoS One 6: e19728. [Google Scholar]
  • Vucić M, Jelić D, Žutinić P, Grandjean F, Jelić M. 2018. Distribution of Eurasian minnows (Phoxinus: Cypriniformes) in the Western Balkans. Knowl Manag Aquat Ecosyst 419: 11. [Google Scholar]
  • Walter S. 2013. Morphologie und Haplotypenverteilung von Phoxinus phoxinus (Linneaus, 1758) (Pisces: Telostei: Cyprinidae) in der Sieg. Rheinische Friedrich-Wilhelms-Universität, Bonn, 63 p. [Google Scholar]
  • Webb AC. 2007. Status of non-native freshwater fishes in tropical northern Queensland, including establishment success, rates of spread, range and introduction pathways. J Proc R Soc New South Wales 140: 63–78. [Google Scholar]
  • Westermann F, Fischer J, Ehlscheid T, Wanner S, Prawitt O, Loch P, Wendling K. 2011. Gewässerzustandsbericht 2010 − Ökologische Bilanz zur Biologie, Chemie und Biodiversität der Fließgewässer und Seen, Landesamt für Umwelt, Wasserwirtschaft, und Gewerbeaufsicht, Mainz and Ministrium für Umwelt, Landwirtschaft, Ernährung, Weinbau und Forsten, Mainz, 222 p. [Google Scholar]
  • Wittmack L. 1875. Beiträge zur Fischereistatistik des Deutschen Reiches, Deutscher Fischerei Verein, Berlin, 251 p. [Google Scholar]
  • Wundsch HH. 1915. Fischerei und Industrie im Gebiet der Sieg und ihrer wichtigsten Zuflüsse. Z Fisch 16: 151–386. [Google Scholar]
  • Zhang CG, Zhao YH. et al. 2016. Species Diversity and Distribution of Inland Fishes in China, Science Press, Beijing, 296 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.