Open Access
Review
Issue |
Knowl. Manag. Aquat. Ecosyst.
Number 426, 2025
Topical issue on Ecological, evolutionary and environmental implications of floating photovoltaics
|
|
---|---|---|
Article Number | 13 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/kmae/2025005 | |
Published online | 14 May 2025 |
- Åberg J, Jansson M, Jonsson A. 2010. Importance of water temperature and thermal stratification dynamics for temporal variation of surface water CO₂ in a boreal lake. J Geophys Res 115: 2009JG001085. [PubMed] [Google Scholar]
- Adams RA, Hayes MA. 2008. Water availability and successful lactation by bats as related to climate change in arid regions of western North America. J Anim Ecol 77: 1115–1121. [CrossRef] [PubMed] [Google Scholar]
- Almeida RM, Schmitt R, Grodsky SM, Flecker AS, Gomes CP, Zhao L, Liu H, Barros N, Kelman R, McIntyre PB. 2022. Floating solar power could help fight climate change — let’s get it right. Nature 606: 246–249. [CrossRef] [PubMed] [Google Scholar]
- Armstrong A, Page T, Thackeray SJ, Hernandez RR, Jones ID. 2020. Integrating environmental understanding into freshwater floatovoltaic deployment using an effects hierarchy and decision trees. Environ Res Lett 15: 114055. [CrossRef] [Google Scholar]
- Bartels P, Cucherousset J, Gudasz C, Jansson M, Karlsson J, Persson L, Premke K, Rubach A, Steger K, Tranvik LJ, Eklöv P. 2012. Terrestrial subsidies to lake food webs: an experimental approach. Oecologia 168: 807–818. [CrossRef] [PubMed] [Google Scholar]
- Bartosiewicz M, Maranger R, Przytulska A, Laurion I . 2021. Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake. Water Res 196: 116985. [CrossRef] [PubMed] [Google Scholar]
- Bartrons M, Papeş M, Diebel MW, Gratton C, Vander Zanden MJ. 2013. Regional-level inputs of emergent aquatic insects from water to land. Ecosystems 16: 1353–1363. [CrossRef] [Google Scholar]
- Bastviken D, Cole J, Pace M, Tranvik L. 2004. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18: GB4009. [CrossRef] [Google Scholar]
- Bastviken D, Cole JJ, Pace ML, Bogert MCV de. 2008. Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions. J Geophys Res Biogeosci 113. [Google Scholar]
- Bastviken D, Treat CC, Pangala SR, Gauci V, Enrich-Prast A, Karlson M, Gålfalk M, Romano MB, Sawakuchi HO. 2023. The importance of plants for methane emission at the ecosystem scale. Aquatic Botany 184: 103596. [CrossRef] [Google Scholar]
- Baxter CV, Fausch KD, Carl Saunders W. 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones: Prey subsidies link stream and riparian food webs. Freshw Biol 50: 201–220. [CrossRef] [Google Scholar]
- Benjamins S, Williamson B, Billing SL, Yuan Z, Collu M, Fox C, Hobbs L, Masden EA, Cottier-Cook EJ, Wilson B. 2024. Potential environmental impacts of floating solar photovoltaic systems. Renew Sustain Energy Rev 199: 114463. [CrossRef] [Google Scholar]
- Berberich ME, Beaulieu JJ, Hamilton TL, Waldo S, Buffam I. 2020. Spatial variability of sediment methane production and methanogen communities within a eutrophic reservoir: Importance of organic matter source and quantity. Limnol Oceanogr 65: 1336–1358. [CrossRef] [Google Scholar]
- Bergström A, Karlsson J. 2019. Light and nutrient control phytoplankton biomass responses to global change in northern lakes. Glob Change Biol 25: 2021–2029. [CrossRef] [PubMed] [Google Scholar]
- Bergström I, Kortelainen P, Sarvala J, Salonen K. 2010. Effects of temperature and sediment properties on benthic CO2 production in an oligotrophic boreal lake. Freshwater Biology. [Google Scholar]
- Biggs J, Von Fumetti S, Kelly-Quinn M. 2017. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793: 3–39. [CrossRef] [Google Scholar]
- Black TV, Robertson BA. 2020. How to disguise evolutionary traps created by solar panels. J Insect Conserv 24: 241–247. [CrossRef] [Google Scholar]
- Bonacina L, Fasano F, Mezzanotte V, Fornaroli R. 2023. Effects of water temperature on freshwater macroinvertebrates: a systematic review. Biol Rev 98: 191–221. [CrossRef] [PubMed] [Google Scholar]
- Brett MT, Bunn SE, Chandra S, Galloway AWE, Guo F, Kainz MJ, Kankaala P, Lau DCP, Moulton TP, Power ME, Rasmussen JB, Taipale SJ, Thorp JH, Wehr JD. 2017. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshw Biol 62: 833–853. [CrossRef] [Google Scholar]
- Carpenter SR, Cole JJ, Pace ML, Van De Bogert M, Bade DL, Bastviken D, Gille CM, Hodgson JR, Kitchell JF, Kritzberg ES. 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86: 2737–2750. [CrossRef] [Google Scholar]
- Chakraborty A, Saha GK, Aditya G. 2022. Macroinvertebrates as engineers for bioturbation in freshwater ecosystem. Environ Sci Pollut Res 29: 64447–64468. [CrossRef] [PubMed] [Google Scholar]
- Château P-A., Wunderlich RF, Wang T-W., Lai H-T., Chen C-C., Chang F-J. 2019. Mathematical modeling suggests high potential for the deployment of floating photovoltaic on fish ponds. Sci Total Environ 687: 654–666. [CrossRef] [PubMed] [Google Scholar]
- Choi Y-K. 2014. A study on power generation analysis of floating PV system considering environmental impact. Int J Softw Eng Appl 8: 75–84. [Google Scholar]
- Colas F, Baudoin J-M., Chauvet E, Clivot H, Danger M, Guérold F, Devin S. 2016. Dam-associated multiple-stressor impacts on fungal biomass and richness reveal the initial signs of ecosystem functioning impairment. Ecol Indic 60: 1077–1090. [CrossRef] [Google Scholar]
- Colas F, Baudoin J-M., Bonin P, Cabrol L, Daufresne M, Lassus R, Cucherousset J. 2020. Ecosystem maturity modulates greenhouse gases fluxes from artificial lakes. Science of The Total Environment 144046. [Google Scholar]
- Cole JJ, Carpenter SR, Pace ML, Van de Bogert MC, Kitchell JL, Hodgson JR. 2006. Differential support of lake food webs by three types of terrestrial organic carbon. Ecol Lett 9: 558–568. [CrossRef] [PubMed] [Google Scholar]
- Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 172–185. [CrossRef] [Google Scholar]
- Connolly NM, Crossland MR, Pearson RG. 2004. Effect of low dissolved oxygen on survival, emergence, and drift of tropical stream macroinvertebrates. J North Am Benthol Soc 23: 251–270. [CrossRef] [Google Scholar]
- Danger M, Cornut J, Elger A, Chauvet E. 2012. Effects of burial on leaf litter quality, microbial conditioning and palatability to three shredder taxa. Freshwater Biology. [Google Scholar]
- Davidson TA, Søndergaard M, Audet J, Levi E, Esposito C, Bucak T, Nielsen A. 2024. Temporary stratification promotes large greenhouse gas emissions in a shallow eutrophic lake. Biogeosciences 21: 93–107. [CrossRef] [Google Scholar]
- Davidson TA, Søndergaard M, Audet J, Levi E, Esposito C, Bucak T, Nielsen A. 2024. Temporary stratification promotes large greenhouse gas emissions in a shallow eutrophic lake. Biogeosciences 21: 93–107. [CrossRef] [Google Scholar]
- DelSontro T, Boutet L, St-Pierre A, del Giorgio PA, Prairie YT. 2016. Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity: Productivity regulates methane lake flux. Limnol Oceanogr 61: S62– S77. [Google Scholar]
- DelSontro T, Beaulieu JJ, Downing JA. 2018. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change: GHG emissions from lakes and impoundments. Limnol Oceanogr 3: 64–75. [CrossRef] [Google Scholar]
- Derrien M, Brogi SR, Gonçalves-Araujo R. 2019. Characterization of aquatic organic matter: Assessment, perspectives and research priorities. Water Res 163: 114908. [CrossRef] [PubMed] [Google Scholar]
- Doi H. 2009. Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. Popul Ecol 51: 57–64. [CrossRef] [Google Scholar]
- Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51: 2388–2397. [CrossRef] [Google Scholar]
- Drake TW, Raymond PA, Spencer RG. 2018. Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnol Oceanogr Lett 3: 132–142. [CrossRef] [Google Scholar]
- Drummond LR, McIntosh AR, Larned ST. 2015. Invertebrate community dynamics and insect emergence in response to pool drying in a temporary river. Freshw Biol 60: 1596–1612. [CrossRef] [Google Scholar]
- Encarnação JA, Kierdorf U, Holweg D, Jasnoch U, Wolters V. 2005. Sex-related differences in roost-site selection by Daubenton’s bats Myotis daubentonii during the nursery period. Mamm Rev 35: 285–294. [CrossRef] [Google Scholar]
- Exley G, Hernandez RR, Page T, Chipps M, Gambro S, Hersey M, Lake R, Zoannou K-S., Armstrong A. 2021. Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability. Renew Sustain Energy Rev 152: 111639. [CrossRef] [Google Scholar]
- Exley G, Page T, Thackeray SJ, Folkard AM, Couture R-M., Hernandez RR, Cagle AE, Salk KR, Clous L, Whittaker P, Chipps M, Armstrong A. 2022. Floating solar panels on reservoirs impact phytoplankton populations: A modelling experiment. J Environ Manage 324: 116410. [CrossRef] [PubMed] [Google Scholar]
- Fehlinger L, Misteli B, Morant D, Juvigny-Khenafou N, Cunillera-Montcusí D, Chaguaceda F, Stamenković O, Fahy J, Kolář V, Halabowski D, Nash LN, Jakobsson E, Nava V, Tirozzi P, Cordero PU, Mocq J, Santamans AC, Zamora-Marín JM, Marle P, Chonova T, Bonacina L, Mathieu-Resuge M, Suarez E, Osakpolor SE, Timoner P, Evtimova V, Nita D, Carreira BM, Tapolczai K, Martelo J, Gerber R, Dinu V, Henriques J, Selmeczy GB, Rimcheska B. 2023. The ecological role of permanent ponds in Europe: A review of dietary linkages to terrestrial ecosystems via emerging insects. Inland Waters 13: 30–46. [CrossRef] [Google Scholar]
- Findlay SEG. 2021. Organic matter decomposition. In: Hobbie JE, ed. Fundamentals of Ecosystem Science. Amsterdam: Elsevier, pp. 81–102. [CrossRef] [Google Scholar]
- Fiskal A, Anthamatten E, Deng L, Han X, Lagostina L, Michel A, Zhu R, Dubois N, Schubert CJ, Bernasconi SM, Lever MA. 2021. Carbon sources of benthic fauna in temperate lakes across multiple trophic states. Biogeosciences 18: 4369–4388. [CrossRef] [Google Scholar]
- France R, Culbert H, Peters R. 1996. Decreased carbon and nutrient input to boreal lakes from particulate organic matter following riparian clear-cutting. Environ Manage 20: 579–583. [CrossRef] [PubMed] [Google Scholar]
- Gao Y, Jia J, Lu Y, Yang T, Lyu S, Shi K, Zhou F, Yu G. 2021. Determining dominating control mechanisms of inland water carbon cycling processes and associated gross primary productivity on regional and global scales. Earth Sci Rev 213: 103497. [CrossRef] [Google Scholar]
- Gasith A, Hosier AD. 1976. Airborne litterfall as a source of organic matter in lakes. Limnol Oceanogr 21: 253–258. [CrossRef] [Google Scholar]
- Genkai-Kato M, Carpenter SR. 2005. Eutrophication due to phosphorus recycling in relation to lake morphometry, temperature, and macrophytes. Ecology 86: 210–219. [CrossRef] [Google Scholar]
- Giling DP, Mac Nally R, Thompson RM. 2015. How Might Cross-System Subsidies in Riverine Networks be Affected by Altered Flow Variability? Ecosystems 18: 1151–1164. [CrossRef] [Google Scholar]
- Gladyshev MI, Sushchik NN, Anishchenko OV, Makhutova ON, Kolmakov VI, Kalachova GS, Kolmakova AA, Dubovskaya OP. 2011. Efficiency of transfer of essential polyunsaturated fatty acids versus organic carbon from producers to consumers in a eutrophic reservoir. Oecologia 165: 521–531. [CrossRef] [PubMed] [Google Scholar]
- Grasset C, Mendonça R, Villamor Saucedo G, Bastviken D, Roland F, Sobek S. 2018. Large but variable methane production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic matter: Methanogenic potential of different OC types. Limnol Oceanogr 63: 1488–1501. [CrossRef] [PubMed] [Google Scholar]
- Grasset C, Moras S, Isidorova A, Couture R, Linkhorst A, Sobek S. 2021. An empirical model to predict methane production in inland water sediment from particular organic matter supply and reactivity. Limnology & Oceanography 66: 3643–3655. [CrossRef] [Google Scholar]
- Gratton C, Zanden MJV. 2009. Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems. Ecology 90: 2689–2699. [CrossRef] [PubMed] [Google Scholar]
- Gudasz C, Sobek S, Bastviken D, Koehler B, Tranvik LJ. 2015. Temperature sensitivity of organic carbon mineralization in contrasting lake sediments. JGR Biogeosciences 120: 1215–1225. [CrossRef] [Google Scholar]
- Guerrero-Cruz S, Vaksmaa A, Horn MA, Niemann H, Pijuan M, Ho A. 2021. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Front Microbiol 12: 678057. [CrossRef] [PubMed] [Google Scholar]
- Guillemette F, Del Giorgio PA. 2012. Simultaneous consumption and production of fluorescent dissolved organic matter by lake bacterioplankton. Environmental Microbiology 14: 1432–1443. [CrossRef] [PubMed] [Google Scholar]
- Guillemette F, Von Wachenfeldt E, Kothawala DN, Bastviken D, Tranvik LJ. 2017. Preferential sequestration of terrestrial organic matter in boreal lake sediments. JGR Biogeosciences 122: 863–874. [CrossRef] [Google Scholar]
- Haas J, Khalighi J, De La Fuente A, Gerbersdorf SU, Nowak W, Chen P-J. 2020. Floating photovoltaic plants: Ecological impacts versus hydropower operation flexibility. Energy Conversion and Management 206: 112414. [CrossRef] [Google Scholar]
- Hanson PC, Hamilton DP, Stanley EH, Preston N, Langman OC, Kara EL. 2011. Fate of Allochthonous Dissolved Organic Carbon in Lakes: A Quantitative Approach. Evens T, ed. PLoS ONE 6: e21884. [CrossRef] [PubMed] [Google Scholar]
- Hansson L-A., Ekvall MK, Ekvall MT, Ahlgren J, Holm WS, Dessborn L, Brönmark C. 2014. Experimental evidence for a mismatch between insect emergence and waterfowl hatching under increased spring temperatures. Ecosphere 5: 1–9. [CrossRef] [Google Scholar]
- Harper MP, Peckarsky BL. 2006. Emergence Cues Of A Mayfly In A High-Altitude Stream Ecosystem: Potential Response To Climate Change. Ecological Applications 16: 612–621. [CrossRef] [PubMed] [Google Scholar]
- Hassall C, Thompson DJ. 2008. The effects of environmental warming on Odonata: a review. International Journal of Odonatology 11: 131–153. [CrossRef] [Google Scholar]
- Heino J. 2008. Patterns of functional biodiversity and function‐environment relationships in lake littoral macroinvertebrates. Limnology & Oceanography 53: 1446–1455. [CrossRef] [Google Scholar]
- Heino J, Alahuhta J, Bini LM, Cai Y, Heiskanen A, Hellsten S, Kortelainen P, Kotamäki N, Tolonen KT, Vihervaara P, Vilmi A, Angeler DG. 2021. Lakes in the era of global change: moving beyond single‐lake thinking in maintaining biodiversity and ecosystem services. Biological Reviews 96: 89–106. [CrossRef] [PubMed] [Google Scholar]
- Hirama F, Urabe J, Doi H, Kazama T, Noguchi T, Tappenbeck TH, Katano I, Yamamichi M, Yoshida T, Elser JJ. 2022. Terrigenous subsidies in lakes support zooplankton production mainly via a green food chain and not the brown food chain. Front Ecol Evol 10: 956819. [CrossRef] [Google Scholar]
- Hoekman D, Dreyer J, Jackson RD, Townsend PA, Gratton C. 2011. Lake to land subsidies: Experimental addition of aquatic insects increases terrestrial arthropod densities. Ecology 92: 2063–2072. [CrossRef] [PubMed] [Google Scholar]
- Holgerson MA, Raymond PA. 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience 9: 222–226. [CrossRef] [Google Scholar]
- Horváth G, Blahó M, Egri Á, Kriska G, Seres I, Robertson B. 2010. Reducing the Maladaptive Attractiveness of Solar Panels to Polarotactic Insects. Conservation Biology 24: 1644–1653. [CrossRef] [PubMed] [Google Scholar]
- Ilgen K, Schindler D, Wieland S, Lange J. 2023. The impact of floating photovoltaic power plants on lake water temperature and stratification. Sci Rep 13: 7932. [CrossRef] [PubMed] [Google Scholar]
- Jenny J, Francus P, Normandeau A, Lapointe F, Perga M, Ojala A, Schimmelmann A, Zolitschka B. 2016. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Global Change Biology 22: 1481–1489. [CrossRef] [PubMed] [Google Scholar]
- Ji Q, Li K, Wang Y, Feng J, Li R, Liang R. 2022. Effect of floating photovoltaic system on water temperature of deep reservoir and assessment of its potential benefits, a case on Xiangjiaba Reservoir with hydropower station. Renewable Energy 195: 946–956. [CrossRef] [Google Scholar]
- K.W. Cummins. 1975. The importance of different energy sources in freshwater ecosystems. Reichle, D. E., Franklin, J. F. and Goodall, D. W., 50–54. [Google Scholar]
- Kajan R, Frenzel P. 1999. The effect of chironomid larvae on production, oxidation and fluxes of methane in a flooded rice soil. FEMS microbiology ecology 28: 121–129. [CrossRef] [Google Scholar]
- Kankaala P, Eller G, Jones RI. 2007. Could bacterivorous zooplankton affect lake pelagic methanotrophic activity? Fal 169: 203–209. [CrossRef] [Google Scholar]
- Karlsson J. 2007. Different carbon support for respiration and secondary production in unproductive lakes. Oikos 116: 1691–1696. [CrossRef] [Google Scholar]
- Kiffney PM, Richardson JS. 2010. Organic matter inputs into headwater streams of southwestern British Columbia as a function of riparian reserves and time since harvesting. Forest Ecology and Management 260: 1931–1942. [CrossRef] [Google Scholar]
- Köhler J, Hachoł J, Hilt S. 2010. Regulation of submersed macrophyte biomass in a temperate lowland river: Interactions between shading by bank vegetation, epiphyton and water turbidity. Aquatic Botany 92: 129–136. [CrossRef] [Google Scholar]
- Kovalenko KE, Thomaz SM, Warfe DM. 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685: 1–17. [CrossRef] [Google Scholar]
- Kritzberg ES, Cole JJ, Pace ML, Granéli W, Bade DL. 2004. Autochthonous versus allochthonous carbon sources of bacteria: Results from whole‐lake 13C addition experiments. Limnology & Oceanography 49: 588–596. [CrossRef] [Google Scholar]
- Kunz TH, Fenton MB, eds. 2003. Bat ecology, University of Chicago Press, Chicago, Ill, 779 p. [Google Scholar]
- Larsen S, Muehlbauer JD, Marti E. 2016. Resource subsidies between stream and terrestrial ecosystems under global change. Global Change Biology 22: 2489–2504. [CrossRef] [PubMed] [Google Scholar]
- Lau DCP, Sundh I, Vrede T, Pickova J, Goedkoop W. 2014. Autochthonous resources are the main driver of consumer production in dystrophic boreal lakes. Ecology 95: 1506–1519. [CrossRef] [PubMed] [Google Scholar]
- Leal JS, González AL, Soares BE, Casa Nova C, Marino NAC, Farjalla VF. 2023. Global and local drivers of the relative importance of allochthonous and autochthonous energy sources to freshwater food webs. Ecography 2023: e06612. [CrossRef] [Google Scholar]
- Liu J, Liang J, Bravo AG, Wei S, Yang C, Wang D, Jiang T. 2021. Anaerobic and aerobic biodegradation of soil-extracted dissolved organic matter from the water-level-fluctuation zone of the Three Gorges Reservoir region, China. Science of The Total Environment 764: 142857. [CrossRef] [Google Scholar]
- Liu Z, Ma C, Li X, Deng Z, Tian Z. 2023. Aquatic environment impacts of floating photovoltaic and implications for climate change challenges. Journal of Environmental Management 346: 118851. [CrossRef] [PubMed] [Google Scholar]
- Lowrance R. 1998. Riparian Forest Ecosystems as Filters for Nonpoint-Source Pollution. In Pace ML, Groffman PM, eds. Successes, Limitations, and Frontiers in Ecosystem Science, Springer New York, New York, NY. 113–141. [CrossRef] [Google Scholar]
- Martin-Creuzburg D, Kowarik C, Straile D. 2017. Cross-ecosystem fluxes: Export of polyunsaturated fatty acids from aquatic to terrestrial ecosystems via emerging insects. Science of The Total Environment 577: 174–182. [CrossRef] [Google Scholar]
- Martinsen KT, Andersen MR, Sand-Jensen K. 2019. Water temperature dynamics and the prevalence of daytime stratification in small temperate shallow lakes. Hydrobiologia 826: 247–262. [CrossRef] [Google Scholar]
- Mathieu‐Resuge M, Martin‐Creuzburg D, Twining CW, Parmar TP, Hager HH, Kainz MJ. 2021. Taxonomic composition and lake bathymetry influence fatty acid export via emergent insects. Freshwater Biology 66: 2199–2209. [CrossRef] [Google Scholar]
- Matveev V, Robson BJ. 2014. Aquatic Food Web Structure and the Flow of Carbon. Freshwater Reviews 7: 1–24. [CrossRef] [Google Scholar]
- Mehner T, Attermeyer K, Brauns M, Brothers S, Hilt S, Scharnweber K, Van Dorst RM, Vanni MJ, Gaedke U. 2022. Trophic Transfer Efficiency in Lakes. Ecosystems 25: 1628–1652. [CrossRef] [Google Scholar]
- Mermillod-Blondin F. 2011. The functional significance of bioturbation and biodeposition on biogeochemical processes at the water-sediment interface in freshwater and marine ecosystems. Journal of the North American Benthological Society 30: 770–778. [CrossRef] [Google Scholar]
- Merten EC, Snobl ZR, Wellnitz TA. 2014. Microhabitat influences on stream insect emergence. Aquat Sci 76: 165–172. [CrossRef] [Google Scholar]
- Middelboe AL, Markager S. 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology 37: 553–568. [CrossRef] [Google Scholar]
- Moore JC, Berlow EL, Coleman DC, Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PJ. 2004. Detritus, trophic dynamics and biodiversity. Ecology Letters 7: 584–600. [CrossRef] [Google Scholar]
- Moran MA, Hodson RE. 1990. Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnology & Oceanography 35: 1744–1756. [CrossRef] [Google Scholar]
- Nakano S, Murakami M. 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences 98: 166–170. [CrossRef] [PubMed] [Google Scholar]
- Napolitano GE. 1999. Fatty Acids as Trophic and Chemical Markers in Freshwater Ecosystems. In Arts MT, Wainman BC, eds. Lipids in Freshwater Ecosystems, Springer New York, New York, NY. 21–44. [CrossRef] [Google Scholar]
- Nobre R, Boulêtreau S, Colas F, Azemar F, Tudesque L, Parthuisot N, Favriou P, Cucherousset J. 2023. Potential ecological impacts of floating photovoltaics on lake biodiversity and ecosystem functioning. Renewable and Sustainable Energy Reviews 188: 113852. [CrossRef] [Google Scholar]
- Nobre R, Rocha SM, Healing S, Ji Q, Boulêtreau S, Armstrong A, Cucherousset J. 2024. A global study of freshwater coverage by floating photovoltaics. Solar Energy 267: 112244. [CrossRef] [Google Scholar]
- Nobre RLG, Vagnon C, Boulêtreau S, Colas F, Azémar F, Tudesque L, Parthuisot N, Millet P, Cucherousset J. 2025. Floating photovoltaics strongly reduce water temperature: A whole-lake experiment. Journal of Environmental Management 375: 124230. [CrossRef] [PubMed] [Google Scholar]
- Pace ML, Prairie YT. 2005. Respiration in lakes. Respiration in Aquatic Ecosystems, Oxford University Press, New-York. 103–121. [CrossRef] [Google Scholar]
- Phillips G, Willby N, Moss B. 2016. Submerged macrophyte decline in shallow lakes: What have we learnt in the last forty years? Aquatic Botany 135: 37–45. [CrossRef] [Google Scholar]
- Piovia-Scott J, Sadro S, Knapp RA, Sickman J, Pope KL, Chandra S. 2016. Variation in reciprocal subsidies between lakes and land: perspectives from the mountains of California. Can J Fish Aquat Sci 73: 1691–1701. [CrossRef] [Google Scholar]
- Pouran HM, Lopes MPC, Nogueira T, Branco DAC, Sheng Y. 2022. Environmental and technical impacts of floating photovoltaic plants as an emerging clean energy technology. iScience 25. [Google Scholar]
- Praetzel LSE, Plenter N, Schilling S, Schmiedeskamp M, Broll G, Knorr K-H. 2020. Organic matter and sediment properties determine in-lake variability of sediment CO2 and CH4 production and emissions of a small and shallow lake. Biogeosciences 17: 5057–5078. [CrossRef] [Google Scholar]
- Prairie YT, Bird DF, Cole JJ. 2002. The summer metabolic balance in the epilimnion of southeastern Quebec lakes. Limnology and Oceanography 47: 316–321. [CrossRef] [Google Scholar]
- Ray NE, Holgerson MA, Grodsky SM. 2024. Immediate Effect of Floating Solar Energy Deployment on Greenhouse Gas Dynamics in Ponds. Environ Sci Technol 58: 22104–22113. [CrossRef] [PubMed] [Google Scholar]
- Recalde FC, Breviglieri CPB, Kersch-Becker MF, Romero GQ. 2021. Contribution of emergent aquatic insects to the trophic variation of tropical birds and bats. Food Webs 29: e00209. [CrossRef] [Google Scholar]
- Ribeiro-Brasil DRG, Brasil LS, Veloso GKO, Matos TPD, Lima ESD, Dias-Silva K. 2022. The impacts of plastics on aquatic insects. Science of The Total Environment 813: 152436. [CrossRef] [Google Scholar]
- Richardson JS. 1992. Coarse Particulate Detritus Dynamics in Small, Montane Streams Southwestern British Columbia. Can J Fish Aquat Sci 49: 337–346. [CrossRef] [Google Scholar]
- Rivera Vasconcelos F, Diehl S, Rodríguez P, Karlsson J, Byström P. 2018. Effects of Terrestrial Organic Matter on Aquatic Primary Production as Mediated by Pelagic-Benthic Resource Fluxes. Ecosystems 21: 1255–1268. [CrossRef] [Google Scholar]
- Rudd JWM, Hamilton RD. 1978. Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism 1. Limnology & Oceanography 23: 337–348. [CrossRef] [Google Scholar]
- Sahu A, Yadav N, Sudhakar K. 2016. Floating photovoltaic power plant: A review. Renewable and Sustainable Energy Reviews 66: 815–824. [CrossRef] [Google Scholar]
- Schad AN, Kennedy JH, Dick GO, Dodd L. 2020. Aquatic macroinvertebrate richness and diversity associated with native submerged aquatic vegetation plantings increases in longer-managed and wetland-channeled effluent constructed urban wetlands. Wetlands Ecol Manage 28: 461–477. [CrossRef] [Google Scholar]
- Schindler DE, Smits AP. 2017. Subsidies of Aquatic Resources in Terrestrial Ecosystems. Ecosystems 20: 78–93. [CrossRef] [Google Scholar]
- Schmidt TS, Kraus JM, Walters DM, Wanty RB. 2013. Emergence Flux Declines Disproportionately to Larval Density along a Stream Metals Gradient. Environ Sci Technol 47: 8784–8792. [CrossRef] [PubMed] [Google Scholar]
- Schwaderer AS, Yoshiyama K, De Tezanos Pinto P, Swenson NG, Klausmeier CA, Litchman E. 2011. Eco‐evolutionary differences in light utilization traits and distributions of freshwater phytoplankton. Limnology & Oceanography 56: 589–598. [CrossRef] [Google Scholar]
- Soininen J, Bartels P, Heino J, Luoto M, Hillebrand H. 2015. Toward More Integrated Ecosystem Research in Aquatic and Terrestrial Environments. BioScience 65: 174–182. [CrossRef] [Google Scholar]
- Solomon CT, Jones SE, Weidel BC, Buffam I, Fork ML, Karlsson J, Larsen S, Lennon JT, Read JS, Sadro S, Saros JE. 2015. Ecosystem Consequences of Changing Inputs of Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge and Future Challenges. Ecosystems 18: 376–389. [CrossRef] [Google Scholar]
- Song X, Liu T, Wang G, Zhang Y, Li C, Willem F DB. 2024. Floating photovoltaic systems homogenize the waterbird communities across subsidence wetlands in the North China Plain. Journal of Environmental Management 349: 119417. [CrossRef] [PubMed] [Google Scholar]
- Sweeney BW, Jackson JK, Newbold JD, Funk DH. 1992. Climate Change and the Life Histories and Biogeography of Aquatic Insects in Eastern North America. In Firth P, Fisher SG, eds. Global Climate Change and Freshwater Ecosystems, Springer New York, New York, NY., 143–176. [CrossRef] [Google Scholar]
- Taube R, Ganzert L, Grossart H-P., Gleixner G, Premke K. 2018. Organic matter quality structures benthic fatty acid patterns and the abundance of fungi and bacteria in temperate lakes. Science of The Total Environment 610-611: 469–481. [CrossRef] [Google Scholar]
- Thomaz SM, Cunha ERD. 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta 22: 218–236. [Google Scholar]
- Torrent L, López‐Baucells A, Rocha R, Bobrowiec PED, Meyer CFJ. 2018. The importance of lakes for bat conservation in Amazonian rainforests: an assessment using autonomous recorders. Pettorelli N, Merchant N, eds. Remote Sens Ecol Conserv 4: 339–351. [CrossRef] [Google Scholar]
- Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298–2314. [CrossRef] [Google Scholar]
- Tranvik LJ, Cole JJ, Prairie YT. 2018. The study of carbon in inland waters—from isolated ecosystems to players in the global carbon cycle. Limnology and Oceanography letters 3: 41–48. [CrossRef] [Google Scholar]
- Twining CW, Parmar TP, Mathieu-Resuge M, Kainz MJ, Shipley JR, Martin-Creuzburg D. 2021. Use of Fatty Acids From Aquatic Prey Varies With Foraging Strategy. Front Ecol Evol 9: 735350. [CrossRef] [Google Scholar]
- Vadeboncoeur Y, Peterson G, Vander Zanden MJ, Kalff J. 2008. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology 89: 2542–2552. [CrossRef] [PubMed] [Google Scholar]
- Vesala T, Huotari J, Rannik Ü, Suni T, Smolander S, Sogachev A, Launiainen S, Ojala A. 2006. Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open‐water period. J Geophys Res 111: 2005JD006365. [CrossRef] [Google Scholar]
- Vestergaard O, Sand-Jensen K. 2000. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquatic Botany 67: 85–107. [CrossRef] [Google Scholar]
- Voigt CC, Kingston T, eds. 2016. Bats in the Anthropocene: Conservation of Bats in a Changing World, Springer International Publishing, Cham. [CrossRef] [Google Scholar]
- Ward JV, Stanford JA. 1982. Thermal responses in the evolutionary ecology of aquatic insects. Annu Rev Entomol 27: 97–117. [CrossRef] [Google Scholar]
- Watanabe NC, Mori I, Yoshitaka I. 1999. Effect of water temperature on the mass emergence of the mayfly, Ephoron shigae, in a Japanese river (Ephemeroptera: Polymitarcyidae). Freshwater Biology 41: 537–541. [CrossRef] [Google Scholar]
- Webster JR, Golladay SW, Benfield EF, D’Angelo DJ, Peters GT. 1990. Effects of Forest Disturbance on Particulate Organic Matter Budgets of Small Streams. Journal of the North American Benthological Society 9: 120–140. [CrossRef] [Google Scholar]
- West WE, Coloso JJ, Jones SE. 2012. Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment. Freshwater Biology 57: 949–955. [CrossRef] [Google Scholar]
- West WE, Creamer KP, Jones SE. 2016. Productivity and depth regulate lake contributions to atmospheric methane. Limnology and Oceanography 61: S51–S61. [Google Scholar]
- Wetzel RG. 1990. Land-water interfaces: Metabolic and limnological regulators. SIL Proceedings, 1922–2010 24: 6–24. [Google Scholar]
- Wilkinson GM, Pace ML, Cole JJ. 2013. Terrestrial dominance of organic matter in north temperate lakes. Global Biogeochemical Cycles 27: 43–51. [CrossRef] [Google Scholar]
- Wissinger SA, Klemmer AJ, Braccia A, Bush BM, Batzer DP. 2021. Relationships between macroinvertebrates and detritus in freshwater wetlands. Freshwater Science 40: 681–698. [CrossRef] [Google Scholar]
- Woolway RI, Zhao G, Rocha SMG, Thackeray SJ, Armstrong A. 2024. Decarbonization potential of floating solar photovoltaics on lakes worldwide. Nat Water 2: 566–576. [CrossRef] [Google Scholar]
- Yamamichi M, Kazama T, Tokita K, Katano I, Doi H, Yoshida T, Hairston NG, Urabe J. 2018. A shady phytoplankton paradox: when phytoplankton increases under low light. Proc R Soc B 285: 20181067. [CrossRef] [PubMed] [Google Scholar]
- Yang J, Han M, Wang B, Yao B, Wu Z, Li X, Liu L, Dong H, Jiang H. 2023. Predominance of positive priming effects induced by algal and terrestrial organic matter input in saline lake sediments. Geochimica et Cosmochimica Acta 349: 126–134. [CrossRef] [Google Scholar]
- Yang P, Chua LHC, Irvine KN, Nguyen MT, Low E-W. 2022. Impacts of a floating photovoltaic system on temperature and water quality in a shallow tropical reservoir. Limnology 23: 441–454. [CrossRef] [Google Scholar]
- Yvon-Durocher G, Allen AP, Montoya JM, Trimmer M, Woodward G. 2010. The temperature dependence of the carbon cycle in aquatic ecosystems. Advances in Ecological Research, Elsevier., 267–313. [Google Scholar]
- Zamora-Marín JM, Zamora-López A, Jiménez-Franco MV, Calvo JF, Oliva-Paterna FJ. 2021. Small ponds support high terrestrial bird species richness in a Mediterranean semiarid region. Hydrobiologia 848: 1623–1638. [CrossRef] [Google Scholar]
- Zha X, Tsapekos P, Zhu X, Khoshnevisan B, Lu X, Angelidaki I. 2021. Bioconversion of wastewater to single cell protein by methanotrophic bacteria. Bioresource Technology 320: 124351. [CrossRef] [PubMed] [Google Scholar]
- Zhang W, Liu X, Liu L, Lu H, Wang L, Tang J. 2022. Effects of microplastics on greenhouse gas emissions and microbial communities in sediment of freshwater systems. Journal of Hazardous Materials 435: 129030. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.