Issue
Knowl. Manag. Aquat. Ecosyst.
Number 424, 2023
Anthropogenic impact on freshwater habitats, communities and ecosystem functioning
Article Number 27
Number of page(s) 12
DOI https://doi.org/10.1051/kmae/2023023
Published online 11 December 2023
  • Bailey KM, Houde ED. 1989. Predation on eggs and larvae of marine fishes and the recruitment problem. Adv Mar Biol 25: 1–83. [CrossRef] [Google Scholar]
  • Balon EK. 1975. Reproductive guilds of fishes: A proposal and definition. J Fish Res Board Can 32: 821–864. [CrossRef] [Google Scholar]
  • Barnthouse LW. 2013. Impacts of entrainment and impingement on fish populations: A review of the scientific evidence. Environ Sci Policy 31: 149–156. [CrossRef] [Google Scholar]
  • Bolyen E, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37: 852–857. [CrossRef] [PubMed] [Google Scholar]
  • Boreman J, Goodyear CP 1988. Estimates of entrainment mortality for striped bass and other fish species inhabiting the Hudson River Estuary. Amer Fish Soc Mon 4: 152–160. [Google Scholar]
  • Bryhn AC, Bergenius MAJ, Dimberg PH, Adill A. 2013. Biomass and number of fish impinged at a nuclear power plant by the Baltic Sea. Environ Monit Assess 185: 10073–10084. [CrossRef] [PubMed] [Google Scholar]
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 2016. DAD A2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13: 581–583. [CrossRef] [PubMed] [Google Scholar]
  • Carter LK, Reader PJ. 2000. Patterns of drift and power station entrainment of 0+ fish in the River Trent, England. Fish Manag Ecol 7: 447–464. [CrossRef] [Google Scholar]
  • Cebula M, Ciężak K, Mikołajczyk Ł, Mikołajczyk T, Nowak M, Skowronek D, Wawręty R, Żurek R. 2021. Wybrane aspekty środowiskowych skutków zrzutu wód pochłodniczych przez elektrownie termiczne z otwartym systemem chłodzenia Raport z badań terenowych przeprowadzonych w latach 2019 i 2020. TNZ, Oświęcim, 85 p. [Google Scholar]
  • Cowan JH Jr, Rose KA, DeVries DR. 2000. Is density-dependent growth in young-of the-year fishes a question of critical weight? Rev Fish Biol Fish 10: 61–89. [CrossRef] [Google Scholar]
  • EA Engineering, Science and Technology Inc. 2008. Entrainment characterization data report for Calvert Cliffs Nuclear Power Plant. Constelation Energy Final Report, June 2008. [Google Scholar]
  • Ehrler CP, Steinbeck JR, Laman EA, Hedgepeth JB, Skalski JR, Mayer DL. 2002. A process for evaluating adverse environmental impacts by cooling-water system entrainment at a California power plant. Sci World J S1: 81–105. [CrossRef] [Google Scholar]
  • EPRI. 2000. Review of Entrainment Survival Studies: 1970–2000. Palo Alto, CA. 1000757. [Google Scholar]
  • Foley CJ, Bradley D, Höök TO. 2016. A review and assessment of the potential use of RNA: DNA ratios to assess the condition of entrained fish larvae. Ecol Indic 60: 346–357. [CrossRef] [Google Scholar]
  • Gjøsæter H, Hallfredsson EH, Mikkelsen N, Bogstad B, Pedersen T. 2016. Predation on early life stages is decisive for year-class strength in the Barents Sea capelin (Mallotus villosus) stock. ICES J Mar Sci 73: 182–195. [CrossRef] [Google Scholar]
  • Grabowska J, Kotusz J, Witkowski A. 2010. Alien invasive fish species in Polish waters: an overview. Folia Zool 59: 73–85. [CrossRef] [Google Scholar]
  • Greenwood MFD. 2007. Fish mortality by impingement on the cooling-water intake screens of Britain's largest direct-cooled power station. Mar Pollut Bull 56: 723–739. [Google Scholar]
  • Hazlerigg CR, Lorenzen K, Thorbek P, Wheeler JR, Tyler CR. 2012. Density-dependent processes in the life history of fishes: evidence from laboratory populations of zebrafish Danio rerio. PLoS One 7(5): e37550. [CrossRef] [PubMed] [Google Scholar]
  • Houde ED. 1989. Subtleties and episodes in the early life of fishes. J Fish Biol 35: 29–38. [CrossRef] [Google Scholar]
  • Janáč M, Šlepanský L, Valová Z, Jurajda P. 2013. Downstream drift of round goby (Neogobius melanostomus) and tubenose goby (Proterorhinus semilunaris) in their non-native area. Ecol Freshwat Fish 22: 430–438. [CrossRef] [Google Scholar]
  • Jurajda P. 1998. Drift of larval and juvenile fishes, especially Rhodeus sericeus and Rutilus rutilus, in the River Morava (Danube basin). Arch Hydrobiol 141: 231–241. [CrossRef] [Google Scholar]
  • Kamler E. 1992. Early life history of fish. London: Chapman and Hall, 267 p. [Google Scholar]
  • Kelso JRM, Milburn GS. 1979. Entrainment and impingement of fish by power plants in the Great Lakes which use the once-through cooling process. J Great Lakes Res 5: 182–194. [CrossRef] [Google Scholar]
  • Lewis RB, Seegert G. 2000. Entrainment and impingement studies at power plants on the Wabash River in Indiana. Environ Sci Pol 3: 303–312. [CrossRef] [Google Scholar]
  • Liu S, Xie Z, Liu B, Wang Y, Gao J, Zeng Y, Xie J, Xie Z, Jia B, Qui P, Li R, Wang L, Chen S. 2020. Global river warming due to climate change and anthropogenic heat emission. Glob Planet Change 193: 103289. [CrossRef] [Google Scholar]
  • Mikołajczyk T, Nowak M, Skowronek D, Mikołajczyk Ł, Wawręty R. 2020. Wpływ elektrowni termicznych na ichtiofaunę. Kraków-Oświęcim-Bystra: TNZ-PNWI, 47 p. [Google Scholar]
  • Mikołajczyk T, Nowak M, Skowronek D, Mikołajczyk Ł, Wawręty R. 2022. Szacunkowe straty w ichtiofaunie Wisły oraz Narwi spowodowane zasysaniem larw ryb i wczesnych form narybkowych do systemów chłodzących Elektrowni Połaniec, Kozienice i Ostrołęka B. Oświęcim: TNZ, 86 p. [Google Scholar]
  • Newbold SC, Iovanna R. 2007. Population level impacts of cooling water withdrawals on harvested fish stocks. Environ Sci Technol 41: 2108–2114. [CrossRef] [PubMed] [Google Scholar]
  • Nunn AD, Tewson LH, Cowx IG. 2012. The foraging ecology of larval and juvenile fishes. Rev Fish Biol Fish 22: 377–408. [CrossRef] [Google Scholar]
  • Pander J, Mueller M, Knott J, Egg L, Geist J. 2017. Is it worth the money? The functionality of engineered shallow stream banks as habitat for juvenile fishes in heavily modified water bodies. River Res Appl 33: 63–72. [CrossRef] [Google Scholar]
  • Paradis AR, Pepin P, Brown JA. 1996. Vulnerability of fish eggs and larvae to predation: revoiew of the influence of the relative size of prey and predator. Can J Fish Aquat Sci 53: 1226–1235. [CrossRef] [Google Scholar]
  • Patrick PH, Di Giuseppe M, Manolopoulos H, Tai M-K., Poulton JS, Wright J. 2021. Entrainment of fish eggs and larvae at an operating nuclear generating station using improved methodology. Lake Reserv Manag 37: 186–198. [CrossRef] [Google Scholar]
  • Pauly D, Liang C. 2022. Temperature and the maturation of fish: a simple sine-wave model for predicting accelerated spring spawning. Environ Biol Fish 105: 1481–1487. [CrossRef] [Google Scholar]
  • Pavlov DS. 1994. The downstream migration of young fishes in rivers: Mechanisms and distribution. Folia Zool 43: 193–208. [Google Scholar]
  • Pavlov DS, Mikheev VN, Kostin VV. 2020. Migrations of young fish in regulated rivers: Effects of ecological filters. Inland Water Biol 13: 262–272. [CrossRef] [Google Scholar]
  • Ptak M, Sojka M, Graf R, Choiński A, Zhu S, Nowak B. 2022. Warming Vistula River – the effects of climate and local conditions on water temperature in one of the largest rivers in Europe. J Hydrol Hydromech 70: 1–11. [Google Scholar]
  • Raptis CE, van Vliet MTH, Pfister S. 2016. Global thermal pollution of rivers from thermoelectric power plants. Environ Res Lett 11: 10411. [Google Scholar]
  • Reichard M, Jurajda P, Ondračková M. 2002. The effect of light intensity on the drift of young-of-the-year cyprinid fishes. J Fish Biol 61: 1063–1066. [Google Scholar]
  • Riverkeeper. 2014. Power plant fish kills. Power plant's extreme water withdrawals kill staggering numerous of fish and deplete ecosystems. https://www.riverkeeper.org/campaigns/stop-polluters/power-plants/power-plant-fish-kills/ [Google Scholar]
  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e2584. [CrossRef] [PubMed] [Google Scholar]
  • Rose KA, Cowan JH, Jr, Winemiller KO, Myers RA, Hilborn R. 2001. Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis. Fish Fish 2: 293–327. [CrossRef] [Google Scholar]
  • Schaum A. 2008. Principles of local polynomial interpolation. In: 2008 37th IEEE Applied Imagery Pattern Recognition Workshop. Washington, DC, USA, pp. 1–6. [Google Scholar]
  • Schiemer F, Keckeis H, Kamler E. 2003. The early life history stages of riverine fish: ecophysiological and environmental bottlenecks. Comp Biochem Physiol Part A 133: 439–449. [Google Scholar]
  • Sierra Club. 2011. Giant fish blenders: how power plants kill fish and damage our waterways. http://www.sierraclub.org/pressroom/media/2011/2011-08-fish-blenders.pdf [Google Scholar]
  • Steinbeck J, Hedgepeth J, Raimondi P, Cailliet G, Mayer D. 2007. Assessing power plant cooling water intake system entrainment impacts. Consultant report prepared for California Energy Commission, http://www.energy.ca.gov/2007publications/CEC-700-2007-010/ [Google Scholar]
  • Turnpenny AWH, Taylor CJL. 2000. An assessment of the effect of the Sizewell power station on fish population. Hydroecol Appl 12: 87–134. [CrossRef] [EDP Sciences] [Google Scholar]
  • Van der Kraak FG, Pankhurst NW. 1996. Temperature effects of the reproductive performance of fish. In McDonald G, Wood CM, eds. Global Warming: implications for freshwater and Marine Fish. Cambridge University Press pp. 159–176. [Google Scholar]
  • White JW, Nickols KJ, Clarke L, Larier JL. 2010. Larval entrainment in cooling water intakes: spatially explicit models reveal effects on benthic metapopulations and shortcomings of traditional assessments. Can J Fish Aquat Sci 67: 2014–2031. [CrossRef] [Google Scholar]
  • Witkowski A, Kotusz J, Przybylski M. 2009. Stopień zagrożenia słodkowodnej ichtiofauny Polski: Czerwona lista minogów i ryb − stan 2009. Chrońmy Przyr Ojcz 65: 33–52. [Google Scholar]
  • Zitek A, Schmutz S, Ploner A. 2004. Fish drift in a Danube sidearm-system: II. Seasonal and diurnal patterns. J Fish Biol 65: 1339–1357. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.