Issue
Knowl. Manag. Aquat. Ecosyst.
Number 424, 2023
Anthropogenic impact on freshwater habitats, communities and ecosystem functioning
Article Number 2
Number of page(s) 8
DOI https://doi.org/10.1051/kmae/2022025
Published online 10 January 2023
  • Attayde JL, Okun N, Brasil J, Menezes R, Mesquita P. 2007. Os impactos da introdução da tilápia do nilo, Oreochromis niloticus, sobre a estrutura trófica dos ecossistemas aquáticos do bioma caatinga. Oecolog Brasiliensis 11: 450–461. [CrossRef] [Google Scholar]
  • Bakker ES, Wood KA, Pagès JF, Veen GF, Christianen MJA, Santamaría L, Nolet BA, Hilt S. 2016. Herbivory on freshwater and marine macrophytes: a review and perspective. Aquat Bot 135: 18–36. [CrossRef] [Google Scholar]
  • Bamford AJ, Razafindrajao F, Young RP, Hilton GM. 2017. Profound and pervasive degradation of Madagascar's freshwater wetlands and links with biodiversity. PLoS ONE 12: 182673 [Google Scholar]
  • Boar RR. 2006. Responses of a fringing Cyperus papyrus swamp to changes in water level. Aquat Bot 84: 85–92. [CrossRef] [Google Scholar]
  • Brosens L, Broothaerts N, Campforts B, Jacobs L, Razanamahandry VF, Van Moerbeke Q, Bouillon S, Razafimbelo T, Rafolisy T, Govers G. 2022. Under pressure: rapid lavaka erosion and floodplain sedimentation in central Madagascar. Sci Total Environ 806: 150483. [CrossRef] [PubMed] [Google Scholar]
  • Canonico GC, Arthington A, Mccrary JK, Thieme ML. 2005. The effects of introduced tilapias on native biodiversity. Aquat Conserv 15: 463–483. [CrossRef] [Google Scholar]
  • Cucherousset J, Olden JD. 2011. Ecological impacts of non-native freshwater fishes. Fisheries 36: 215–230. [CrossRef] [Google Scholar]
  • Donohue I, Garcia Molinos J. 2009. Impacts of increased sediment loads on the ecology of lakes. Biol Rev 84: 517–531. [CrossRef] [Google Scholar]
  • Doupé RG, Knott MJ, Schaffer J, Burrows DW, Lymbery AJ. 2010. Experimental herbivory of native Australian macrophytes by the introduced Mozambique tilapia Oreochromis mossambicus. Aust Ecol 35: 24–30. [CrossRef] [Google Scholar]
  • Hassall C, Hollinshead J, Hull A. 2011. Environmental correlates of plant and invertebrate species richness in ponds. Biodiv Conserv 20: 3189–3222 [CrossRef] [Google Scholar]
  • Hinden H, Oerteli B, Menetrey N, Sager L, Lachavanne JB. 2005. Alpine pond biodiversity: what are the related environmental variables? Aquat Conserv: Mar Freshw Ecosyst 15: 613–624. [CrossRef] [Google Scholar]
  • Junk WJ, An S, Finlayson CM, Gopal B, Květ J, Mitchell SA, Mitsch WJ, Robarts RD. 2013. Current state of knowledge regarding the world's wetlands and their future under global climate change: a synthesis. Aquat Sci 75: 151–167. [CrossRef] [Google Scholar]
  • Jackson MC, Loewen CJG, Vinebrooke RD, Chimimba CT. 2016. Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Glob Change Biol 22: 180–189. [CrossRef] [Google Scholar]
  • Kull CA. 2012. Air photo evidence of land cover change in the highlands: wetlands and grasslands give way to crops and woodlots. Madag Conserv Dev 7: 144–152. [Google Scholar]
  • Lammers PL, Richter T, Mantilla-Contreras J. 2020. From safety net to point of no return − are small-scale inland fisheries reaching their limits? Sustainability 12: 7299. [CrossRef] [Google Scholar]
  • Liu Z, Hu J, Zhong P, Zhang X, Ning J, Larsen SE, Chen D, Gao Y, He H, Jeppesen E. 2018. Successful restoration of a tropical shallow eutrophic lake: strong bottom-up but weak top-down effects recorded. Water Res 146: 88–97. [CrossRef] [PubMed] [Google Scholar]
  • Máiz-Tomé L, Sayer C, Darwall W, eds. 2018. The status and distribution of freshwater biodiversity in Madagascar and the Indian Ocean islands hotspot. Gland, Switzerland: IUCN. 128p. [Google Scholar]
  • McCrary JK, van den Berghe EP, McKaye KR, Lopez Perez LJ. 2001. Tilapia cultivation: a threat to native fish species in Nicaragua. Encuentro 58: 3–19. [Google Scholar]
  • Miller SA, Crowl TA. 2006. Effects of common carp (Cyprinus carpio) on macrophytes and invertebrate communities in a shallow lake. Freshw Biol 51: 85–94. [Google Scholar]
  • Pacini N, Hesslerová P, Pokorný J, Mwinami T, Morrison EHJ, Cook AA, Zhang S, Harper DM. 2018. Papyrus as an ecohydrological tool for restoring ecosystem services in Afrotropical wetlands. Ecohydrol Hydrobiol 18: 142–154. [CrossRef] [Google Scholar]
  • Pruvot YZM, de Roland LAR, Rakotondratsima M, Razafindrakoto Y, Razafindrajao F, Rabarisoa R, Thorstrom R. 2020. Breeding ecology and nestling growth of the Madagascar Pond Heron Ardeola idae in a monospecific colony at Sofia Lake, northern Madagascar. Ostrich 91: 313–325. [CrossRef] [Google Scholar]
  • R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. [Google Scholar]
  • Ramifehiarivo N, Brossard M, Grinand C, Razafimahatratra H, Seyler F, Rabenarivo M, Albrecht A. 2016. Mapping soil organic carbon on a national scale: towards an improved and updated map of Madagascar. Geoderma Regional 9: 29–38. [Google Scholar]
  • Rao W, Ning J, Zhong P, Jeppesen E, Liu Z. 2015. Size-dependent feeding of omnivorous Nile tilapia in a macrophyte-dominated lake: implications for lake management. Hydrobiologia 749: 125–134. [CrossRef] [Google Scholar]
  • Ratajczak Z, Carpenter SR, Ives AR, Kucharik CJ, Ramiadantsoa T, Stegner MA, Williams JW, Zhang J, Turner MG. 2018. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol Evol 33: 513–526. [CrossRef] [PubMed] [Google Scholar]
  • Reis V, Hermoso V, Hamilton SK, Ward D, Fluet-Chouinard E, Lehner B, Linke S. 2017. A global assessment of inland wetland conservation status. BioScience 67: 523–533. [CrossRef] [Google Scholar]
  • Sparks JS, Stiassny MLJ. 2003. Introduction to the freshwater fishes. In Goodman SM, Benstead JP eds. The Natural History of Madagascar. Chicago: University of Chicago Press, pp. 849–882. [Google Scholar]
  • Thompson MSA, Brooks SJ, Sayer CD, Woodward G, Axmacher JC, Perkins DM, Gray C. 2018. Large woody debris “rewilding” rapidly restores biodiversity in riverine food webs. J Appl Ecol 55: 895–904. [CrossRef] [Google Scholar]
  • Vejříková I, Vejřík L, Lepš J, Kočvara L, Sajdlová Z, Čtvrtlíková M, Peterka J. 2018. Impact of herbivory and competition on lake ecosystem structure: underwater experimental manipulation. Sci Rep 8: 12130. [CrossRef] [PubMed] [Google Scholar]
  • Williams AE, Moss B, Eaton J. 2002. Fish induced macrophyte loss in shallow lakes: top-down and bottom-up processes in mesocosm experiments. Freshw Biol 47: 2216–2232. [CrossRef] [Google Scholar]
  • Williams-subiza EA, Epele LB. 2021. Drivers of biodiversity loss in freshwater environments: a bibliometric analysis of the recent literature. Aquat Conserv 31: 2469–2480. [CrossRef] [Google Scholar]
  • Wood KA, O'Hare MT, McDonald C, Searle KR, Daunt F, Stillman RA. 2017. Herbivore regulation of plant abundance in aquatic ecosystems. Biol Rev 92: 1128–1141. [CrossRef] [Google Scholar]
  • Zambrano L, Martinez-Ramos, Scheffer M. 2001. Catastrophic response of lakes to benthivorous fish introduction. Oikos 94: 344–350. [CrossRef] [Google Scholar]
  • Zhang X, Mei X, Gulati RD. 2017. Effects of omnivorous tilapia on water turbidity and primary production dynamics in shallow lakes: implications for ecosystem management. Rev Fish Biol Fish 27: 245–254. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.