Issue
Knowl. Manag. Aquat. Ecosyst.
Number 423, 2022
Freshwater ecosystems management strategies
Article Number 19
Number of page(s) 11
DOI https://doi.org/10.1051/kmae/2022017
Published online 29 July 2022
  • Acreman M, Arthington AH, Colloff MJ, et al. 2014. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front Ecol Environ 12: 466–473. [CrossRef] [Google Scholar]
  • Albert JS, Destouni G, Duke-Sylvester SM, et al. 2020. Scientists' warning to humanity on the freshwater biodiversity crisis. Ambio 50: 85–94. [Google Scholar]
  • Albert JS, Tagliacollo VA, Dagosta F. 2020. Diversification of neotropical freshwater fishes. Annu Rev Ecol Evolut Syst 51: 27–53. [CrossRef] [Google Scholar]
  • Alexander P, Prestele R, Verburg PH, et al. 2017. Assessing uncertainties in land cover projections. Glob Change Biol 23: 767–781. [CrossRef] [Google Scholar]
  • Almeida RM, Schmitt RJP, Castelletti A, et al. 2022. Strategic planning of hydropower development: balancing benefits and socioenvironmental costs. Curr Opin Environ Sustain 56: 101175. [CrossRef] [Google Scholar]
  • Arbaca H, Morán‑Ordoñez A, Villero D, et al. 2022. Spatial prioritisation of management zones in protected areas for the integration of multiple objectives. Biodivers Conserv . https://doi.org/10.1007/s10531-022-02383-z [Google Scholar]
  • Arneth A, Shin Y-J, Leadley P, et al. 2020. Post-2020 biodiversity targets need to embrace climate change. Proc Natl Acad Sci 117: 30882–30891. [CrossRef] [PubMed] [Google Scholar]
  • Bailone RL, Borra RC, Fukushima HCS, Aguiar LK. 2022. Water reuse in the food industry. Discover Food 2. [Google Scholar]
  • Barbarossa V, Bosmans J, Wanders N, et al. 2021. Threats of global warming to the world's freshwater fishes. Nat Commun 12: 1701. [CrossRef] [PubMed] [Google Scholar]
  • Bastin L, Gorelick N, Saura S, et al. 2019. Inland surface waters in protected areas globally: Current coverage and 30-year trends. PLoS ONE 14: e0210496. [CrossRef] [PubMed] [Google Scholar]
  • Bell DA, Kovach RP, Muhlfeld CC, et al. 2021. Climate change and expanding invasive species drive widespread declines of native trout in the northern Rocky Mountains, USA. Sci Adv 7: 52. [Google Scholar]
  • Belletti B, Garcia de Leaniz C, Jones J. et al. 2020. More than one million barriers fragment Europe's rivers. Nature 588: 436–441. [CrossRef] [PubMed] [Google Scholar]
  • Bernhardt ES, Savoy P, Vlah ML, et al. 2022. Light and flow regimes regulate the metabolism of rivers. Proc Natl Acad Sci 119: e2121976119. [CrossRef] [PubMed] [Google Scholar]
  • Blanchet S, Grenouillet G, Beauchard O, et al. 2010. Non-native species disrupt the worldwide patterns of freshwater fish body size: implications for Bergmann's rule. Ecol Lett 13: 421–431. [CrossRef] [PubMed] [Google Scholar]
  • Blanchet S, Tedesco PA. 2021. French vote for river barriers defies biodiversity strategy. Nature 594: 26. [CrossRef] [PubMed] [Google Scholar]
  • Blöschl G, Hall J, Parajka JJ, et al. 2017. Changing climate shifts timing of European floods. Science 357: 588–590. [CrossRef] [PubMed] [Google Scholar]
  • Bogan MT, Lytle DA. 2011. Severe drought drives novel community trajectories in desert stream pools. Freshw Biol 56: 2070–2081. [CrossRef] [Google Scholar]
  • Borgwardt F, Unfer G, Auer S, et al. 2020. Direct and indirect climate change impacts on brown trout in Central Europe: how thermal regimes reinforce physiological stress and support the emergence of diseases. Front Environ Sci 8: 59. [CrossRef] [Google Scholar]
  • Brauer CJ, Beheregaray LB. 2020. Recent and rapid anthropogenic habitat fragmentation increases extinction risk for freshwater biodiversity. Evol Appl 13: 2857–2869. [CrossRef] [PubMed] [Google Scholar]
  • Brodin D, Jonsson JFM, Klaminder J. 2013. Unintended recipients of antidepressants. Science 339: 814–815. [CrossRef] [PubMed] [Google Scholar]
  • Brucet SA, Pédron S, Mehner T, et al. 2013. Fish diversity in European lakes: geographical factors dominate over anthropogenic pressures. Freshw Biol 58: 1779–1793. [CrossRef] [Google Scholar]
  • Carmona CP, Tamme R, Pärtel M, et al. 2021. Erosion of global biodiversity across the tree of life. Sci Adv 7: eabf2675. [CrossRef] [PubMed] [Google Scholar]
  • Caro T, Rowe Z, Berger J, Wholey P, Dobson A. 2022. An inconvenient misconception: Climate change is not the principal driver of biodiversity loss. Conserv Lett e12868. [Google Scholar]
  • Carpenter SR, Stenley EH, Vander Zanden MJ. 2011. States of the World's freshwater ecosystems, physical, chemical and biological changes. Annu Rev Environ Resour 36: 75–99. [CrossRef] [Google Scholar]
  • Chaudhari S, Brown E, Quispe-Abad R, Moran E, Müller M, Pokhrel Y. 2021. In-stream turbines for rethinking hydropower development in the Amazon basin. Nat Sustain 4: 680–687. [CrossRef] [Google Scholar]
  • Cauvy-Fraunié S, Dangles O. 2019. A global synthesis of biodiversity responses to glacier retreat. Nat Ecol Evol 3: 1675–1685. [CrossRef] [PubMed] [Google Scholar]
  • Clark MA, Domingo NGG, Colgan K, et al. 2020. Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science 370: 705–708. [CrossRef] [PubMed] [Google Scholar]
  • Comte L, Buisson LT, Daufresne M, Grenouillet G. 2013. Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshw Biol 58: 625–639. [CrossRef] [Google Scholar]
  • Comte L, Olden JD. 2017. Climatic vulnerability of the world's freshwater and marine fishes. Nat Climate Change 7: 718–722. [CrossRef] [Google Scholar]
  • Comte L, Olden JD, Tedesco PA, Ruhi A, Giam X. 2021. Climate and land-use changes interact to drive long-term reorganization of riverine fish communities globally. Proc Natl Acad Sci 118: e2011639118. [CrossRef] [PubMed] [Google Scholar]
  • Crist E, Mora C, Engelman R. 2017. The interaction of human population, food production, and biodiversity protection. Science 356: 260–264. [CrossRef] [PubMed] [Google Scholar]
  • Cunillera-Montcusí D, Beklioğlu M, Cañedo-Argüelles M, et al. 2022. Freshwater salinisation: a research agenda for a saltier word. Trends Ecol Evol 37: 440–452. [CrossRef] [PubMed] [Google Scholar]
  • Czorlich Y, Aykanat T, Erkinaro J, Orell P, Primmer CR. 2022. Rapid evolution in salmon life history induced by direct and indirect effects of fishing. Science 10.1126/science.abg5980. [Google Scholar]
  • Daufresne M, Lengfeller K, Sommer U. 2009. Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci U S A 106: 12788–12793. [CrossRef] [PubMed] [Google Scholar]
  • Deines AM, Bunnel DB, Rogers MW, et al. 2017. The contribution of lakes to global inland fisheries harvest. Front Ecol Environ 15: 293–298. [CrossRef] [Google Scholar]
  • Dias MS., Cornu JF., Oberdorff T., Lasso CA, Tedesco PA. 2013. Natural fragmentation in river networks as a driver of speciation for freshwater fishes. Ecography 36: 683–689. [CrossRef] [Google Scholar]
  • Dias MS, Tedesco PA, Hugueny B, et al. 2017. Anthropogenic stressors and riverine fish extinctions. Ecol Indic 79: 37–46. [CrossRef] [Google Scholar]
  • Diaz S, Settele J, Brondízio ES, et al. 2019. IPBES: Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn, Germany. 56 pages. https://doi.org/10.5281/zenodo.3553579. [Google Scholar]
  • Dobson A, Rowe Z, Berger J, Wholey P, Caro T. 2021. Biodiversity loss due to more than climate change. Science 374: 699–700. [CrossRef] [PubMed] [Google Scholar]
  • Döll P, Zhang J. 2010. Impact of climate change on freshwater eco- systems: a global-scale analysis of ecologically relevant river flow alterations. Hydrol Earth Syst Sci 14: 783–799. [CrossRef] [Google Scholar]
  • Dudgeon D. 2019. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr Biol 29: 960–966. [Google Scholar]
  • Ebele AJ, Abou-Helwafa A, Harrad S. 2017. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contamin 3: 1–16. [CrossRef] [Google Scholar]
  • Eerkes-Medrano D, Thompson RC, Aldridge DC. 2015. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75: 63–82. [CrossRef] [PubMed] [Google Scholar]
  • Eisner S, Flörke M, Chamorro A, et al. 2017. An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins. Clim Change 141: 401–417. [CrossRef] [Google Scholar]
  • Engle V. 2011. Estimating the Provision of Ecosystem Services by Gulf of Mexico Coastal Wetlands. Wetlands 31: 179–193. [CrossRef] [Google Scholar]
  • Ezcurra E, Barrios E, Ezcurra P et al. 2019. A natural experiment reveals the impact of hydroelectric dams on the estuaries of tropical rivers. Science Advances 5: eaau9875. [CrossRef] [PubMed] [Google Scholar]
  • FAO. 2016. The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome. 200 pp. https://www.fao.org/3/i5555e/i5555e.pdf [Google Scholar]
  • Feld CK, Birk S, Eme D et al. 2016. Disentangling the effects of land-use and geo-climatic factors on diversity in European freshwater ecosystems. Ecol Indic 60: 71–83. [CrossRef] [Google Scholar]
  • Field R, Hawkins BA, Cornell HV, et al. 2009. Explaining spatial diversity gradients across scales: a meta-analysis. J Biogeogr 36: 132–147. [CrossRef] [Google Scholar]
  • Flecker AS, Shi Q, Almeida RM, et al. 2022. Reducing adverse impacts of Amazon hydropower expansion. Science 375: 753–760. [CrossRef] [PubMed] [Google Scholar]
  • Foley MM, Bellmore JR, O'Connor JE, et al. 2017. Dam removal: Listening in. Water Resour Res 53: 5229–5246. [CrossRef] [Google Scholar]
  • Foley JA, Defries R, Asner GP, et al. 2005. Global consequences of land-use. Science 309: 570–574. [CrossRef] [PubMed] [Google Scholar]
  • Gardner RC, Finlayson C. 2018. Global Wetland Outlook: State of the World's Wetlands and Their Services to People. Ramsar Convention Secretariat, 2018, Stetson University College of Law Research Paper No. 2020-5. https://ssrn.com/abstract=3261606 [Google Scholar]
  • Grafton RQ, Williams J, Perry CJ, et al. 2018. The paradox of irrigation efficiency. Science 361: 748–750. [CrossRef] [PubMed] [Google Scholar]
  • Gudmundsson L, Seneviratne SI, Zhang X. 2017. Anthropogenic climate change detected in European renewable freshwater resources. Nat Climate Change 7: 813–816. [CrossRef] [Google Scholar]
  • Harper M, Mejbel HS, Longert D, et al. 2021. Twenty-five essential research questions to inform the protection and restoration of freshwater biodiversity. Aquat Conserv 31: 2632–2653. [CrossRef] [Google Scholar]
  • Hawkins BA, Field R, Cornell HV, et al. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84: 3105–3117. [CrossRef] [Google Scholar]
  • Held I, Soden B. 2006. Robust responses of the hydrological cycle to global warming. J Climate 19: 5686–5699. [CrossRef] [Google Scholar]
  • Hickling R, Roy DB, Hill JK, Thomas CD. 2015. A northward shift of range margins in British Odonata. Glob Change Biology 11: 502–506. [Google Scholar]
  • Hintz WD, Arnott SE, Symons CC, et al. 2022. Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proc Natl Acad Sci USA 119: 9e2115033119. [CrossRef] [Google Scholar]
  • Hugueny H, Oberdorff T, Tedesco PA. 2010. Community ecology of river fishes: a large-scale perspective. In: Community ecology of stream fishes: concepts, approaches and techniques (Eds. D. Jackson & K. Gido). American Fisheries Society Symposium 73: 29–62. [Google Scholar]
  • Human Development Report. 2020. The next frontier Human development and the Anthropocene. http://hdr.undp.org/sites/default/files/hdr2020.pdf [Google Scholar]
  • IPBES. 2019. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. E.S. Brondizio, J. Settele, S. Díaz, and H.T. Ngo (editors). IPBES secretariat, Bonn, Germany. 1148 pages. https://doi.org/10.5281/zenodo.3831673 [Google Scholar]
  • Jaeger KL, Olden JD, Pelland LA. 2014. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc Natl Acad Sci U S A 111: 13894–13899. [CrossRef] [PubMed] [Google Scholar]
  • Jansson R, Nilsson C, Renöfält B. 2000. Fragmentation of riparian floras in rivers with multiple dams. Ecology 81: 899–903. [CrossRef] [Google Scholar]
  • Jardine TD, Bond NR, Burford MA, et al. 2015. Does flood rhythm drive ecosystem responses in tropical riverscapes? Ecology 96: 684–692. [CrossRef] [PubMed] [Google Scholar]
  • Jenny J-P., Francus P, Normandeau A, et al. 2016. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob Change Biol 22: 1481–1489. [CrossRef] [Google Scholar]
  • Johnson DB, Hallberg KB. 2004. Acid mine drainage remediation options: a review. Sci Total Environ 338: 3–14. [Google Scholar]
  • Johnson PTJ, Olden JD, Vander Zanden RJ. 2008. Dam invaders: impoundments facilitate biological invasions into freshwaters . Front Ecol Environ 6: 357–363. [CrossRef] [Google Scholar]
  • Joppa LN, O'Connor B, Visconti P, et al. 2016. Filling in biodiversity threat gaps. Science 352: 416–418. [CrossRef] [PubMed] [Google Scholar]
  • Kidd KA, Blanchfield PJ, Mills KH, et al. 2007. Collapse of fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci 104: 8897–8901. [CrossRef] [PubMed] [Google Scholar]
  • Kingsford RT, Bino G, Porter JL. 2017. Continental impacts of water development on waterbirds, contrasting two Australian river basins: Global implications for sustainable water use. Global Change Biol 23: 4958–4969. [CrossRef] [Google Scholar]
  • Kondolf GM, Schmitt RJP, Carling PA, et al. 2022. Save the Mekong delta from drowning. Science 376: 583–585. [CrossRef] [PubMed] [Google Scholar]
  • Knouft JH, Ficklin DL. 2017. The potential impacts of climate change on biodiversity in flowing freshwater systems. Annu Rev Ecol Evol Syst 48: 111–133. [Google Scholar]
  • Kopf RK, Finlayson CM, Humphries P, Sims NC, Hladyz S. 2015. Anthropocene baselines: assessing change and managing biodiversity in human-dominated aquatic ecosystems. BioScience 65: 798–811. [CrossRef] [Google Scholar]
  • Kraaijenbrink PDA, Bierkens MFP, Ludz AF, Immerzeel WW. 2017. Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers. Nature 549: 257–260. [CrossRef] [PubMed] [Google Scholar]
  • Lares M, Ncibi MC, Sillanpää M, Sillanpää M. 2018. Occurrence, identification and removal of microplastic particules and fibers in conventional activated sludge process and advanced MBR technology. Water Res 133: 236–246. [CrossRef] [PubMed] [Google Scholar]
  • Latrubesse EM, Arima EY, Dunne T, et al. 2017. Damming the rivers of the Amazon basin. Nature 546: 363–369. [CrossRef] [PubMed] [Google Scholar]
  • Leadley P, Proença V, Fernández-Manjarrés J, et al. 2014. Interacting regional scale regime shifts for biodiversity and ecosystem services. BioScience 64: 665–679. [CrossRef] [Google Scholar]
  • Leal CG, Lennox GD, Ferraz SFB, et al. 2020. Integrated terrestrial-freshwater planning doubles conservation of tropical aquatic species. Science 370: 117–121. [CrossRef] [PubMed] [Google Scholar]
  • Lenoir J, Bertrand R, Comte L, et al. 2020. Species better track climate warming in the oceans than on land. Nat Ecol Evol 4: 1044–1059. [CrossRef] [PubMed] [Google Scholar]
  • Leung B, Lodge DM, Finnoff D, Shogren JF, Lewis MA, Lamberti G. 2002. An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc Royal Soc B 269: 2407–2413. [CrossRef] [PubMed] [Google Scholar]
  • Louys J, Bradje TJ, Chang C-H, et al. 2021. No evidence for widespread island extinctions after Pleistocene hominin arrival. Proc Natl Acad Sci 118: e2023005118. [CrossRef] [PubMed] [Google Scholar]
  • Luo XX, Yang SL, Wang RS, Zhang CY, Li P. 2017. New evidence of the Yangtze delta recession after closing the Three Gorges dam. Sci Rep 7: 41735. [CrossRef] [PubMed] [Google Scholar]
  • Lynch AJ, Cooke SJ, Deines AM, et al. 2016. The social, economic, and environmental importance of inland fish and fisheries. Environ Rev 24: 115–121. [CrossRef] [Google Scholar]
  • Maasri A, Jähnig SC, Adamescu MC, et al. 2022. A global agenda for advancing freshwater biodiversity research. Ecol Lett 25: 255–263. [CrossRef] [PubMed] [Google Scholar]
  • McIntyre PB, Liermann CAR, Revenga C. 2016. Linking freshwater fishery management to global food security and biodiversity conservation. Proc Natl Acad Sci 113: 12880–12885 [CrossRef] [PubMed] [Google Scholar]
  • Manchester SJ, Bullock JM. 2001. The impacts of non-native species on UK biodiversity and the effectiveness of control. J Appl Ecol 37: 845–864. [Google Scholar]
  • Mantyka-Pringle CS, Martin TG, Moffatt DB, Linke S, Rhodes JR. 2014. Understanding and predicting the combined effects of climate change and land-use change on freshwater macroinvertebrates and fish. J Appl Ecol 51: 572–581. [CrossRef] [Google Scholar]
  • Meng Y, Kelly FJ, Wright SL. 2020. Advances and challenges of microplastic pollution in freshwater ecosystems: a UK perspective. Environ Pollut 256: 113445. [CrossRef] [PubMed] [Google Scholar]
  • Messager ML, Lehner B, Cockburn C, et al. 2021. Global prevalence of non-perennial rivers and streams. Nature 594: 391–397. [CrossRef] [PubMed] [Google Scholar]
  • Messerli P, Murniningtyas E, Eloundou-Enyegue P, et al. 2019. The Future is Now-Science for Achieving Sustainable Development. https://sustainabledevelopment.un.org/content/documents/24797GSDR_report_2019.pdf [Google Scholar]
  • Miller EC. 2021. Comparing diversification rates between lakes, rivers, and the sea. Evolution 75: 2055–2073. [CrossRef] [PubMed] [Google Scholar]
  • Minayeva TY, Bragg OM, Sirin AA. 2017. Towards ecosystem-based restoration of peatland biodiversity. Mires and Peat 19: Article 01, 1–36. [Google Scholar]
  • Moran EF, Lopez MC, Moore N, et al. 2018. Sustainable hydropower in the 21th century. Proc Natl Acad Sci 115: 11891–11898. [CrossRef] [PubMed] [Google Scholar]
  • Morris AL, Guégan JF, Andreou D, et al. 2016. Deforestation-driven food-web collapse linked to emerging tropical infectious disease, Mycobacterium ulcerans . Sci Adv 2: e1600387. [CrossRef] [PubMed] [Google Scholar]
  • Mouton T, Leprieur F, Floury M, et al. 2022. Climate and land-use driven reorganisation of structure and function in river macroinvertebrate communities. Ecography 2022: e06148. [CrossRef] [Google Scholar]
  • Muturi EJ, Donthu RK, Fields CJ, Moise IK, Kim C-H. 2017. Effect of pesticides on microbial communities in container aquatic habitats. Sci Rep 7: 44565. [CrossRef] [PubMed] [Google Scholar]
  • Myers SS, Smith MR, Guth S, et al. 2017. Climate change and global food systems: potential impacts on food security and undernutrition. Annu Rev Public Health 38: 259–277. [CrossRef] [PubMed] [Google Scholar]
  • Ngor PB, Legendre P, Oberdorff T, Lek S. 2018. Flow alterations by dams shaped fish assemblage dynamics in the complex Mekong-3S river system. Ecol Indic 88: 103–114. [CrossRef] [Google Scholar]
  • Nogué S, Santos AMC, Birks HJB, et al. 2021. The human dimension of biodiversity changes on islands. Science 372: 488–491. [CrossRef] [PubMed] [Google Scholar]
  • Ojea E, Lester SE, Salgueiro-Otero D. 2020. Adaptation of fishing communities to climate-driven shifts in target species. One Earth 2: 544–556. [CrossRef] [Google Scholar]
  • Olivier SK, Collins SM, Soranno PA, et al. 2017. Unexpected stasis in a changing world: Lake nutrient and chlorophyll trends since 1990. Global Change Biology 23: 5455–5467. [CrossRef] [PubMed] [Google Scholar]
  • Opperman JJ, Galloway GE, Fargione J, et al. 2009. Sustainable Floodplains Through Large-Scale Reconnection to Rivers. Science 326: 1487–1488. [CrossRef] [PubMed] [Google Scholar]
  • Paerl HW, Paul VJ. 2012. Climate change: Links to global expansion of harmful cyanobacteria. Water Research 46: 1349–1363. [CrossRef] [PubMed] [Google Scholar]
  • Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol System 37: 637–669. [CrossRef] [Google Scholar]
  • Pecl GT, Arajo MB, Bell JD, et al. 2017. Biodiversity redistribution under climate change: impacts on ecosystems and human wellbeing. Science 355: 1389. [Google Scholar]
  • Pekel JF, Cottam A, Gorelick N, Belward AS. 2016. High-resolution mapping of global surface water and its long-term changes. Nature 540: 418, 422. [CrossRef] [PubMed] [Google Scholar]
  • Peñuelas J, Sardans J. 2022. The global nitrogen-phosphorous imbalance. Science 375: 266–267. [CrossRef] [PubMed] [Google Scholar]
  • Pess GR, Quinn TP, Gephard SR, Saunders R. 2014. Re-colonization of Atlantic and Pacific rivers by anadromous fishes: linkages between life history and the benefits of barrier removal. Rev Fish Biol Fish 24: 881–900. [CrossRef] [Google Scholar]
  • Peters R, Berlekamp J, Lucía A, et al. 2021. Integrated impact assessment for sustainable hydropower planning in the Vjosa catchment (Greece, Albania). Sustainability 13: 1514. [CrossRef] [Google Scholar]
  • Poff NR, Schmidt JC. 2016. How dams can go with the flow. Science 353: 1099–1100. [CrossRef] [PubMed] [Google Scholar]
  • Pörtner H-O., Scholes RJ, Agard J, et al. 2021. Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change; IPBES secretariat, Bonn, Germany, https://10.5281/zenodo.4659158. [Google Scholar]
  • Pyne MI, Poff NL. 2017. Vulnerability of stream community composition and function to projected thermal warming and hydrologic change across ecoregions in the western United States. Glob Change Biol 23: 77–93. [CrossRef] [Google Scholar]
  • Reid AJ, Carlson AK, Creed IF, et al. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94: 849–873. [CrossRef] [PubMed] [Google Scholar]
  • Ripple WJ, Wolf C, Newsome TM, et al. 2021. World scientists' warning of a climate emergency 2021. BioScience 71: 894–898. [CrossRef] [Google Scholar]
  • Rosenzweig C, Karoly D, Vicarelli M, et al. 2008. Attributing physical and biological impacts to anthropogenic climate change. Nature 453: 353–357. [CrossRef] [PubMed] [Google Scholar]
  • Sabo JL, Finlay JC, Kennedy T, Post DM. 2010. The role of discharge variation in scaling of drainage area and food chain length in rivers. Science 330: 965–967. [CrossRef] [PubMed] [Google Scholar]
  • Sage RF. 2020. Global change biology: A primer. Global Change Biology 26: 3–30. [CrossRef] [PubMed] [Google Scholar]
  • Scheffers BR, De Meester L, Bridge TCL, et al. 2016. The broad footprint of climate change from genes to biomes to people. Science 354: 719–732. [CrossRef] [Google Scholar]
  • Schwarz U. 2020. Hydropower Projects on Balkan Rivers − 2020 Update. RiverWatch & EuroNatur, Vienna/Radolfzell, 33 pp. https://riverwatch.eu/en/balkanrivers/news/hydropower-projects-balkan-rivers-2020-update. [Google Scholar]
  • Seebens H, Blackburn TM, Dayer EE, et al. 2017. No saturation in the accumulation of alien species worldwide. Nat Commun 8: 14435. [CrossRef] [PubMed] [Google Scholar]
  • Settele J, Scholes R, Betts R, et al. 2014. Terrestrial and Inland Water Systems − In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 271–359. https://www.ipcc.ch/report/ar5/wg2/terrestrial-and-inland-water-systems/. [Google Scholar]
  • Shin Y-J., Arneth A, Chowdhury RR, et al. 2019. Plausible futures of nature, its contributions to people and their good quality of life. In IPBES, 2019. Global Assessment on Biodiversity and Ecosystem Services. (p. 264). https://www.ipbes.net/global-assessment. [Google Scholar]
  • Shin Y-J., Midgley G.F., Archer E, et al. 2022. Actions to halt biodiversity loss generally benefit the climate. Glob Change Biol . https://doi.org/10.1111/gcb.16109. [Google Scholar]
  • Shipley JR, Twining CW, Mathieu-Resuge M, et al. 2022. Climate change shifts the timing of nutitional flux from aquatic insects. Curr Biol 32: 1342–1349. [CrossRef] [PubMed] [Google Scholar]
  • Sinha E, Michalak AM, Balaji V. 2017. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357: 405–408. [CrossRef] [PubMed] [Google Scholar]
  • Smith P, Arneth A, Barnes DKA, et al. 2022. How do we best synergize climate mitigation actions to co-benefit biodiversity? Glob Change Biol https://doi.org/10.1111/gcb.16056. [Google Scholar]
  • Stendera S, Adrian R, Bonada N, et al. 2012. Drivers and stressors of freshwater biodiversity patterns across different ecosystems and scales. Hydrobiologia 696: 1–28. [CrossRef] [Google Scholar]
  • Stoffels RJ, Humphries P, Bond NR, Price AE. 2022. Fragmentation of lateral connectivity and fish population dynamics in large rivers. Fish Fish https://doi.org/10.1111/faf.12641. [Google Scholar]
  • Stork NE. 2010. Re-assessing current extinction rates. Biodivers Conserv 19: 357–371. [CrossRef] [Google Scholar]
  • Su G, Logez M, Shengli Tao JX, Villeger S, Brosse S. 2021. Human impacts on global freshwater fish biodiversity. Science 371: 835–838. [CrossRef] [PubMed] [Google Scholar]
  • Sweeney BW, Bott TL, Jackson JK, et al. 2004. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc Natl Acad Sci 101: 14132–14137. [CrossRef] [PubMed] [Google Scholar]
  • Tedesco PA, Oberdorff T, Cornu JF, et al. 2013. A scenario for impacts of water availability loss due to climate change on riverine fish extinction rates. J Appl Ecol 50: 1105–1115. [CrossRef] [Google Scholar]
  • Tedesco PA, Beauchard O, Bigorne R, et al. 2017a. A global database on freshwater fish species occurrence in drainage basins. Sci Data 4: 170141. [CrossRef] [PubMed] [Google Scholar]
  • Tedesco PA, Lévêque C, Paradis E, Hugueny B. 2017b. Explaining global-scale diversification patterns in actinopterygian fishes. J Biogeogr 44: 773–783. [CrossRef] [Google Scholar]
  • Thomas CD. 2020. The development of Anthropocene biotas. Philos Trans Roy Soc B: Biol Sci 375: 20190113. [CrossRef] [PubMed] [Google Scholar]
  • Thomas A, Ramkumar A, Shanmugam A (2022). CO2 acidification and its differential responses on aquatic biota: a review. Environ Adv 8: 100219. [CrossRef] [Google Scholar]
  • Tickner D, Opperman JJ, Abell R, et al. 2020. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70: 330–342. [CrossRef] [PubMed] [Google Scholar]
  • Tisseuil C, Cornu JF, Beauchard O, et al. 2013. Global diversity patterns and cross-taxa convergence in freshwater systems. J Anim Ecol 82: 365–376. [CrossRef] [PubMed] [Google Scholar]
  • Toussaint A, Charpin N, Beauchard O, et al. 2018. Non-native species led to marked shifts in functional diversity of the world freshwater fish faunas. Ecol Lett 21: 1649–1659. [CrossRef] [PubMed] [Google Scholar]
  • Turner SWD, Ng JY, Galleli S. 2017. Examining global electricity supply vulnerability to climate change using high-fidelity hydropower dam model. Sci Total Environ 590-591: 663–675. [CrossRef] [PubMed] [Google Scholar]
  • United Nations, Department of Economic and Social Affairs, Population Division. 2015. World Population Prospects: The 2015 Revision. New York: United Nations. https://www.un.org/en/development/desa/publications/world-population-prospects-2015-revision.html. [Google Scholar]
  • van Rees CB, Waylen KA, Schmidt-Kloiber A, et al. 2021. Safeguarding freshwater life beyond 2020: Recommendations for the new global biodiversity framework from the European experience. Conserv Lett 14: e12771. [CrossRef] [Google Scholar]
  • van Vliet MTH, Wiberg D, Leduc S, Riahi K. 2016. Power generation system vulnerability and adaptation to changes in climate and water resources. Nat Clim Change 6: 375–380. [CrossRef] [Google Scholar]
  • van Vuuren DP, Edmonds J, Kainuma M, et al. 2011. The representative concentration pathways: an overview. Climatic Change 109: 5–31. [CrossRef] [Google Scholar]
  • Villéger S, Blanchet S, Beauchard O, Oberdorff T, Brosse S. 2011. Current and future patterns of freshwater fish homogenization over the globe. Proc Natl Acad Sci 108: 18003–18008. [CrossRef] [PubMed] [Google Scholar]
  • Vörösmarty CJ, McIntyre PB, Gessner MO, et al. 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561. [CrossRef] [PubMed] [Google Scholar]
  • Wang X, Edwards RL, Auler AS, et al. 2017. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541: 204–207. [CrossRef] [PubMed] [Google Scholar]
  • Wiens JJ, 2016. Climate-related local extinctions are already widespread among plant and animal species. Plos Biol 14: e2001104. [CrossRef] [PubMed] [Google Scholar]
  • Winemiller KO, McIntyre PB, Castello L, et al. 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128–129. [CrossRef] [PubMed] [Google Scholar]
  • Wilkinson JL, Boxall ABA, Kolpin DW, et al. 2022. Pharmaceutical pollution of the world's rivers. Proc Natl Acad Sci 119: 8e2113947119. [CrossRef] [Google Scholar]
  • Woodward G, Perkins DM, Brown RE. 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans Royal Soc B 365: 2093–2106. [CrossRef] [PubMed] [Google Scholar]
  • Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K. 2015. A global boom in hydropower dam construction. Aquat Sci 77: 161–170. [CrossRef] [Google Scholar]
  • Zhang S, Zheng Y, Zhan A, Dong C, Zhao J, Yao M. 2022. Environmental DNA captures native and non-native fish community variations across the lentic and lotic systems of a megacity. Sci Adv 8: eabk 0097. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.