Knowl. Manag. Aquat. Ecosyst.
Number 423, 2022
Anthropogenic impact on freshwater habitats, communities and ecosystem functioning
Article Number 23
Number of page(s) 12
Published online 14 September 2022
  • Aarts BG, Nienhuis PH. 2003. Fish zonations and guilds as the basis for assessment of ecological integrity of large rivers. Hydrobiologia 500: 157–178. [CrossRef] [Google Scholar]
  • Baudoin JM, Burgun V, Matthieu C, et al. 2015. Assessing the passage of obstacles by fish. Concepts, design and application. The National Agency for Water and Aquatic Environments (Onema), Vincennes, France, 54 pp. [Google Scholar]
  • Beamish FWH, 1978. Swimming capacity. In Hoar WS & Ran-dall DJ, eds. Fish physiology. New York, NY: Academic Press, pp. 101–187. [CrossRef] [Google Scholar]
  • Binohlan C, Froese R, Pauly D, Reyes R. 2011. The length-length table in FishBase. In Froese R & Pauly D, eds. FishBase. World Wide Web electronic publication. Accessed 10 October 2020. [Google Scholar]
  • Brett J. 1964. The respiratory metabolism and swimming performance of young sockeye salmon. J Fish Res Board Can 21: 1183–1226. [CrossRef] [Google Scholar]
  • Buchanan TJ, Somers WP. 1969. Discharge measurements at gaging stations. Report 03-A8. United States Government Printing Office, Washington D.C., the United States, pp. 1. [Google Scholar]
  • Cai L, Johnson D, Mandal P, et al. 2015. Effect of exhaustive exercise on the swimming capability and metabolism of juvenile Siberian sturgeon. Trans Am Fish Soc 144: 532–538. [CrossRef] [Google Scholar]
  • Cano-Barbacil C, Radinger J, Argudo M, Rubio-Gracia F, Vila-Gispert A, García-Berthou E. 2020. Key factors explaining critical swimming speed in freshwater fish: a review and statistical analysis for Iberian species. Sci Rep 10. [PubMed] [Google Scholar]
  • Carling PA. 1992. The nature of the fluid boundary layer and the selection of parameters for benthic ecology. Freshw Biol 28: 273–284. [CrossRef] [Google Scholar]
  • Colavecchia M, Katopodis C, Goosney R, Scruton DA, McKinley RS. 1998. Measurement of burst swimming performance in wild Atlantic salmon (Salmo salar L.) using digital telemetry. Regul Rivers: Res Mgmt 14: 41–51. [CrossRef] [Google Scholar]
  • Collas FPL, Buijse AD, Van den Heuvel FL, et al. 2018. Longitudinal training dams mitigate effects of shipping on environmental conditions and fish density in the littoral zones of the river Rhine. Sci Total Environ 619–620: 1183–1193. [CrossRef] [PubMed] [Google Scholar]
  • Collas FPL, Flores NY, Van Aalderen R, et al. 2020. Rapportage natuurgegevens langsdammen Waal 2016–2020. Series of Reports on Animal Ecology and Physiology 2020-2, Radboud University, Nijmegen, the Netherlands, pp. 56–60 (in Dutch). [Google Scholar]
  • Collas FPL, Van Aalderen R, Scharbert AP, Leuven RSEW. 2021. Stow net fishing in the river Rhine 2018–2021. Series of Reports on Animal Ecology and Physiology 2021-3, Radboud University, Nijmegen, the Netherlands, pp. 3–20. [Google Scholar]
  • Deinet S, Scott-Gatty K, Rotton H, et al. 2020. The Living Planet Index (LPI) for migratory freshwater fish − Technical Report. World Fish Migration Foundation, Groningen, the Netherlands, pp. 6. [Google Scholar]
  • Del Signore A, Lenders HJR, Hendriks AJ, Vonk JA, Mulder C, Leuven RSEW. 2016. Size-mediated effects of water-flow velocity on riverine fish species. River Res Appl 32: 390–398. [CrossRef] [Google Scholar]
  • De Ruijsscher TV, Naqshband S, Hoitink T. 2018. Flow bifurcation at a longitudinal training dam: effects on local morphology. E3S Web Conf 40: 05020. [CrossRef] [EDP Sciences] [Google Scholar]
  • De Ruijsscher TV, Vermeulen B, Hoitink AJF. 2020. Diversion of flow and sediment towards a side channel separated from a river by a longitudinal training dam. Water Resour Res 56: e2019WR026750. [Google Scholar]
  • Eerden H. 2013. Pilot langsdammen Waal: projectplan realisatiefase II monitoren & inregelen − projectfase MIRT4. Concept Projectplan versie 1.0. Bijlage D: Monitoringsplan Pilot Langsdammen Waal. Ministerie van Infrastructuur en Milieu, Rijkswaterstaat Oost Nederland, Arnhem, the Netherlands (in Dutch). [Google Scholar]
  • Flores NY, Collas FPL. 2021. Mitigation of inland navigation effects on biodiversity by longitudinal training dams. Series of Reports on Animal Ecology and Physiology 2021-9. Radboud University, Nijmegen, the Netherlands, pp. 36–38. [Google Scholar]
  • Flores NY, Collas FPL, Mehler K, Schoor MM, Feld CK, Leuven RSEW. 2022. Assessing habitat suitability for native and alien freshwater mussels in the river Waal (the Netherlands), using hydroacoustics and species sensitivity distributions. Environ Model Assess 27: 187–204. [CrossRef] [Google Scholar]
  • Garenc C, Couture P, Laflamme MA, Guderley H. 1999. Metabolic correlates of burst swimming capacity of juvenile and adult threespine stickleback (Gasterosteus aculeatus). J Comp Physiol B 169: 113–122. [CrossRef] [Google Scholar]
  • Grill G, Lehner B, Thieme M, et al. 2019. Mapping the world's free-flowing rivers. Nature 569: 215–221. [CrossRef] [PubMed] [Google Scholar]
  • Hop J, Van de Ven M. 2021. Migration of adult diadromous fish in the Rhine delta: analysis of NEDAP traildata 2017–2020. Report number 20191133/03, ATKB, Rotterdam, the Netherlands, pp. 15–50. [Google Scholar]
  • Innangi S, Bonanno A, Tonielli R, François G, Innangi M, Sandro M. 2016. High resolution 3-D shapes of fish schools: A new method to use the water column backscatter from hydrographic multibeam echo sounders. Appl Acoust 111: 148–160. [CrossRef] [Google Scholar]
  • Kasvi E, Laamanen L, Lotsari E, Alho P. 2017. Flow patterns and morphological changes in a sandy meander bend during a flood—spatially and temporally intensive ADCP measurement approach. Water 9: 106. [CrossRef] [Google Scholar]
  • Katopodis C. 1992. Introduction to fishway design. Freshwater Institute, Department of Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada, 35 pp. [Google Scholar]
  • Kottelat M, Freyhof J. 2007. Handbook of European freshwater fishes. Publications Kollelat, Cornol, and Freyhof, Berlin, 61–465 pp. [Google Scholar]
  • Kucera-Hirzinger V, Schludermann E, Zornig H, Weissenbachter A, Schabuss M, Schiemer F. 2009. Potential effects of navigation-induced wave wash on the early life history stages of riverine fish. Aquat Sci 71: 94–102. [CrossRef] [Google Scholar]
  • Larinier M, Travade F. 2002. Designing fish passage facilities for shad. Bull Fr Pêche Piscic 364: 135–146. [CrossRef] [EDP Sciences] [Google Scholar]
  • Limburg KE, Waldman JR. 2009. Dramatic declines in north Atlantic diadromous fishes. BioScience 59: 955–965. [CrossRef] [Google Scholar]
  • Litaudon A. 1985. Preliminary observations on shad (Alosa alosa) passing the Saint-Laurent-des-Eaux (Loire) weir. Report HE/31/ 85-37. Électricité de France, Paris, France, pp. 63 (in French). [Google Scholar]
  • LovellFord RM, Flitcroft RL, Lewis SL, Santelmann MV, Grant GE. 2020. Patterns of river discharge and temperature differentially influence migration and spawn timing for Coho salmon in the Umpqua River Basin, Oregon. Trans Am Fish Soc 149: 695–708. [CrossRef] [Google Scholar]
  • McCleave JD. 1980. Swimming performance of European eel (Anguilla anguilla L.) elvers. J Fish Biol 16: 445–452. [CrossRef] [Google Scholar]
  • Milly P, Wetherald R, Dunne K, Delworth TL. 2002. Increasing risk of great floods in a changing climate. Nature 415: 514–517. [CrossRef] [PubMed] [Google Scholar]
  • Müller UK, Van den Heuvel BLE, Stamhuis EJ, Videler J. 1997. Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso). J Exp Biol 200: 2893–2906. [CrossRef] [PubMed] [Google Scholar]
  • Myers GS. 1949. Usage of anadromous, catadromous and allied terms for migratory fishes. Copeia 1949: 89–97. [CrossRef] [Google Scholar]
  • Quintella B, Mateus C, Costa J, Domingos I, Almeida P. 2010. Critical swimming speed of yellow- and silver-phase European eel (Anguilla anguilla, L.). J Appl Ichthyol 26: 432–435. [CrossRef] [Google Scholar]
  • R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL Accessed 20 April 2021. [Google Scholar]
  • Raat AJP. 2001. Ecological rehabilitation of the Dutch part of the River Rhine with special attention to the fish. Regul River 17: 131–144. [CrossRef] [Google Scholar]
  • Rand PS, Hinch SG, Morrison J, et al. 2006. Effects of river discharge, temperature, and future climates on energetics and mortality of adult migrating Fraser river sockeye salmon. Trans Am Fish Soc 135: 655–667. [CrossRef] [Google Scholar]
  • Rhoads B, Sukhodolov A. 2001. Field investigation of three-dimensional flow structure at stream confluences: 1. Thermal mixing and time-averaged velocities. Water Resour Res 37 2393–2410. [CrossRef] [Google Scholar]
  • Schaarschmidt T, Jürss K. 2003. Locomotory capacity of Baltic Sea and freshwater populations of the threespine stickleback (Gasterosteus aculeatus). Comp Biochem Phys A 135: 411–424. [CrossRef] [Google Scholar]
  • Shivaramu S, Santo CE, Kašpar V, et al. 2019. Critical swimming speed of sterlet (Acipenser ruthenus): Does intraspecific hybridization affect swimming performance? J Appl Ichthyol 35: 217–225. [CrossRef] [Google Scholar]
  • Taylor E, McPhail J. 1985. Prolonged and burst swimming in anadromous and freshwater threespine stickleback, Gasterosteus aculeatus. Can J Zool 64: 416–420. [Google Scholar]
  • Tytell E, Borazjani I, Sotiropoulos F, Baker T, Anderson E, Lauder G. 2010. Disentangling the functional roles of morphology and motion in the swimming of fish. Integr Comp Biol 50: 1140–1154. [CrossRef] [PubMed] [Google Scholar]
  • Uehlinger U, Wantzen K, Leuven RSEW, Arndt H. 2009. The Rhine River Basin. In Tockner K, Uehlinger U, Robinson CT, eds. Rivers of Europe. London: Academic Press, pp. 199–245. [CrossRef] [Google Scholar]
  • Van de Ven M. 2021a. Telemetric study on the migration of female silver eels in the river Rhine cohorts 2018 and 2019. Report number 20191133/01, PKB, Rotterdam, the Netherlands, pp. 32–46. [Google Scholar]
  • Van de Ven M. 2021b. Telemetric study on the migration of salmon smolts in the river Rhine cohorts 2018 and 2020. Report number 20191133/02, PKB, Rotterdam, the Netherlands, pp. 15–46. [Google Scholar]
  • Van Vliet MTH, Ludwig F, Kabat P. 2013. Global streamflow and thermal habitats of freshwater fishes under climate change. Clim Change 121: 739–754. [CrossRef] [Google Scholar]
  • Vowles AS, Don AM, Karageorgopoulos P, Worthington TA, Kemp PS. 2015. Efficiency of a dual density studded fish pass designed to mitigate for impeded upstream passage of juvenile European eels (Anguilla anguilla) at a model Crump weir. Fish Manag Ecol 22: 307–316. [CrossRef] [Google Scholar]
  • Webb PW. 1984. Body form, locomotion and foraging in aquatic vertebrates. Am Zool 24: 107–120. [CrossRef] [Google Scholar]
  • Westenbroek SM. 2006. Estimates of shear stress and measurements of water levels in the lower Fox River near Green Bay, Wisconsin. Scientific Investigations Report 2006–5226. U. S. Geological Survey, Reston, the United States, pp. 5–29. [Google Scholar]
  • Wolter C, Arlinghaus R. 2003. Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Rev Fish Biol Fisher 13: 63–89. [CrossRef] [Google Scholar]
  • Wolter C, Arlinghaus R. 2004. Burst and critical swimming speed of fish and their ecological relevance in waterways. Report 20/2004. Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB), Berlin, Germany, pp. 77–93. [Google Scholar]
  • Xia Y, Li X, Yang J, et al. 2021. Elevated temperatures shorten the spawning period of silver carp (Hypophthalmichthys molitrix) in a large subtropical river in China. Front Mar Sci 8: 708109 [Google Scholar]
  • Zajicek P, Johannes R, Wolter C. 2018. Disentangling multiple pressures on fish assemblages in large rivers. Sci Total Environ 627: 1093–1105. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.