Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 422, 2021
Article Number 33
Number of page(s) 20
DOI https://doi.org/10.1051/kmae/2021032
Published online 30 August 2021
  • Ackermann B, Esser M, Scherwass A, Arndt H. 2011. Long-term dynamics of microbial biofilm communities of the River Rhine with special references to ciliates. Int Rev Hydrobiol 96: 1–19. [Google Scholar]
  • Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, et al. 2012. The revised classification of eukaryotes. J Eukaryot Microbiol 59: 429–514. [PubMed] [Google Scholar]
  • APHA (American Public Health Association) 1985. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC. [Google Scholar]
  • Arndt H, Schmidt-Denter K, Auer B, Weitere M. 2003. Protozoans and Biofilms. In Krumbein WE, Paterson DM, Zavarzin GA, eds. Fossil and Recent Biofilms, Kluwer Academic Publ, Dordrecht, 161–179. [Google Scholar]
  • Aspetsberger F, Huber F, Kargl S, Scharinger B, Peduzzi P, Hein T. 2002. Particulate organic matter dynamics in a river floodplain system: Impact of hydrological connectivity. Arch Hydrobiol 156: 23–42. [Google Scholar]
  • Azim ME, Beveridge MCM, van Dam AA, Verdegem MCJ. 2005. Periphyton and Aquatic Production: An Introduction. In Azim ME, Verdegem MCJ, van Dam AA, Beveridge MCM, eds. Periphyton: Ecology, Exploitation and Management, CAB International, CABI Publishing, Wallingford, Oxfordshire, UK, 1–13. [Google Scholar]
  • Beech CD, Landers SC. 2002. Ciliated protozoan colonization of substrates from Dauphin Island, Alabama. Europ J Protistol 38: 83–89. [Google Scholar]
  • Bogut I, Vidaković J, Palijan G. 2005. Metaphyton invertebrate fauna at the eulittoral of Lake Sakadaš (Kopački rit Nature Park, Croatia). Hrvatske vode/Croat Wat 13: 153–157. [Google Scholar]
  • Böhme A, Risse-Buhl U, Küsel K. 2009. Protists with different feeding modes change biofilm morphology. FEMS Microbiol Ecol 69: 158–169. [PubMed] [Google Scholar]
  • Cairns J Jr, Dahlberg ML, Dickson KL, Smith N, Waller WT. 1969. The relationship of fresh-water protozoan communities to the MacArthur-Wilson equilibrium model. Am Nat 103: 439–454. [Google Scholar]
  • Carlson RE, Simpson J. 1996. A Coordinator's Guide to Volunteer Lake Monitoring Methods, North American Lake Management Society, 96 p. [Google Scholar]
  • Clarke KR, Gorley RN. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth. [Google Scholar]
  • Coppellotti O, Matarazzo P. 2000. Ciliate colonization of artificial substrates in the Lagoon of Venice. J Mar Biol Ass UK 80: 419–427. [Google Scholar]
  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, et al. 1987. Bacterial biofilms in nature and disease. Annu Rev Microbiol 41: 435–464. [PubMed] [Google Scholar]
  • Esteban GF, Finlay BJ, Warren A. 2015. Free-Living Protozoa. In Thorp JH, Rogers DC, eds. Thorp and Covich's Freshwater Invertebrates: Ecology and General Biology, fourth ed., vol. 1, Academic Press, Elsevier Inc., Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 113–131. [Google Scholar]
  • Finlay BJ, Esteban GF. 1998. Freshwater protozoa: biodiversity and ecological function. Biodivers Conserv 7: 1163–1186. [Google Scholar]
  • Foissner W, Blatterer H, Berger H, Kohmann F. 1991. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems − Band I: Cyrtophorida, Oligotrichida, Hypotrichia, Colpodea, Informationsberichte des Bayer Landesamtes für Wasserwirtschaft, München, 478 p. [Google Scholar]
  • Foissner W, Berger H, Kohmann F. 1992. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems − Band II: Peritrichia, Heterotrichida, Odontostomatida, Informationsberichte des Bayer Landesamtes für Wasserwirtschaft, München, 502 p. [Google Scholar]
  • Foissner W, Berger H, Kohmann F. 1994. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems − Band III: Hymenostomata, Prostomatida, Nassulida, Informationsberichte des Bayer Landesamtes für Wasserwirtschaft, München, 548 p. [Google Scholar]
  • Foissner W, Berger H, Blatterer H, Kohmann F. 1995. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems − Band IV: Gymnostomatea, Loxodes, Suctoria, Informationsberichte des Bayer Landesamtes für Wasserwirtschaft, München, 540 p. [Google Scholar]
  • Foissner W, Berger H. 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw Biol 35: 375–482. [Google Scholar]
  • Früh D, Norf H, Weitere M. 2011. Response of biofilm-dwelling ciliate communities to enrichment with algae. Aquat Microb Ecol 63: 299–309. [Google Scholar]
  • Galir A, Palijan G. 2012. Change in metazooplankton abundance in response to flood dynamics and trophic relations in Danubian floodplain lake (Kopačk Rit, Croatia). Pol J Ecol 60: 777–787. [Google Scholar]
  • Gong J, Song W, Warren A. 2005. Periphytic ciliate colonization: annual cycle and responses to environmental conditions. Aquat Microb Ecol 39: 159–170. [Google Scholar]
  • Harmsworth GC, Sleigh MA. 1993. Colonization of non-living surfaces in streams by peritrich ciliates. Eur J Protistol 29: 294–301. [PubMed] [Google Scholar]
  • Hein T, Baranyi C, Reckendorfer W, Schiemer F. 2004. The impact of surface water exchange on the nutrient and particle dynamics in side-arms along the river Danube, Austria. Sci Total Environ 328: 207–218. [PubMed] [Google Scholar]
  • Higgins S, Hann BJ. 1995. Snail grazer-periphyton interactions: the effects of macrophyte removal, inorganic nutrient addition, and organic nutrient addition. UFS (Delta Marsh) Annual Report 30: 28–37. [Google Scholar]
  • Hillebrand H. 2009. Meta-analysis of grazer control of periphyton biomass across aquatic ecosystems. J Phycol 45: 798–806. [PubMed] [Google Scholar]
  • Iwaniec DM, Childers DL, Rondeau D, Madden CJ, Saunders C. 2006. Effects of hydrologic and water quality drivers on periphyton dynamics in the southern Everglades. Hydrobiologia 569: 223–235. [Google Scholar]
  • Junk WJ, Bayley PB, Sparks RE. 1989. The Flood Pulse Concept in River-Floodplain Systems. In: Dodge DP, ed. Proceedings of the International Large River Symposium (LARS). Canadian Special Publication of Fisheries and Aquatic Science, Ontario, Canada, 110–127. [Google Scholar]
  • Kalinowska K. 2004. Bacteria, nanoflagellates and ciliates as components of the microbial loop in three lakes of different trophic status. Pol J Ecol 52: 19–34. [Google Scholar]
  • Kanavillil N, Kurissery S. 2013. Dynamics of grazing protozoa follow that of microalgae in natural biofilm communities. Hydrobiologia 718: 93–107. [Google Scholar]
  • Kathol M, Fischer H, Weitere M. 2011. Contribution of biofilm-dwelling consumers to pelagic-benthic coupling in a large river. Freshw Biol 56: 1160–1172. [Google Scholar]
  • Kreutz M, Foissner W. 2006. Protozoological Monographs: The Sphagnum Ponds of Simmelried in Germany: A Biodiversity Hot-Spot for Microscopic Organisms, Shaker Verlag, Germany, 267 p. [Google Scholar]
  • Landers SC, Phipps SW. 2003. Ciliated protozoan colonization of substrates from Weeks Bay, Alabama. Gulf Mex Sci 21: 79–85. [Google Scholar]
  • Larned SC. 2010. A prospectus for periphyton: recent and future ecological research. J N Am Benthol Soc 29: 182–206. [Google Scholar]
  • Lepš J, Šmilauer P. 2003. Multivariate Analysis of Ecological Data using CANOCO, Cambridge University Press, New York. [Google Scholar]
  • Liboriussen L. 2003. Production, regulation and ecophysiology of periphyton in shallow freshwater lakes, PhD thesis, National Environmental Research Institute, Denmark, 48 p. [Google Scholar]
  • Luef B, Aspetsberger F, Hein T, Huber F, Peduzzi P. 2007. Impact of hydrology on free‐living and particle‐associated microorganisms in a river floodplain system (Danube, Austria). Freshw Biol 52: 1043–1057. [Google Scholar]
  • MacArthur RH, Wilson EO. 1963. An equilibrium theory of insular zoogeography. Evolution 17: 373–387. [Google Scholar]
  • Mahdy A, Scharfenberger U, Adrian R, Hilt S. 2014. Experimental comparison of periphyton removal by chironomid larvae and Daphnia magna . Inland Waters 5: 81–88. [Google Scholar]
  • McCormick PV, Shuford III RBE, Backus JG, Kennedy WC. 1998. Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, U.S.A. Hydrobiologia 362: 185–208. [Google Scholar]
  • Mieczan T. 2005. Periphytic ciliates in littoral zone of three lakes of different trophic status. Pol J Ecol 53: 489–502. [Google Scholar]
  • Mieczan T. 2010. Periphytic ciliates in three shallow lakes in Eastern Poland: a comparative study between a phytoplankton-dominated lake, a phytoplankton-macrophyte lake and a macrophyte-dominated lake. Zool Stud 49: 589–600. [Google Scholar]
  • Mihaljević M, Getz D, Tadić Z, Živanović B, Gucunski D, Topić J, et al. 1999. Kopački rit − Pregled istraživanja i bibliografija, Hrvatska akademija znanosti i umjetnosti, Zagreb, 188 p. [Google Scholar]
  • Mihaljević M, Špoljarić D, Stević F, Cvijanović V, Hackenberger Kutuzović B. 2010. The influence of extreme floods from the River Danube in 2006 on phytoplankton communities in a floodplain lake: Shift to a clear state. Limnologica 40: 260–268. [Google Scholar]
  • Mihaljević M, Stević F. 2011. Cyanobacterial blooms in a temperate river-floodplain ecosystem: the importance of hydrological extremes. Aquat Ecol 45: 335–349. [Google Scholar]
  • Mihaljević M, Žuna Pfeiffer T. 2012. Colonization of periphyton algae in a temperate floodplain lake under a fluctuating spring hydrological regime. Fundam Appl Limnol 180: 13–25. [Google Scholar]
  • Mora-Gómez J, Freixa A, Perujo N, Barral-Fraga L. 2016. Limits of the Biofilm Concept and Types of Aquatic Biofilms. In Romani AM, Guasch H, Dolors Balaguer M, eds. Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment, Caister Academic Press, Norfolk, UK, 3–27. [Google Scholar]
  • Moschini-Carlos V, Henry R, Pompȇo MLM. 2000. Seasonal variation of biomass and productivity of the periphytic community on artificial substrata in the Jurumirim Reservoir (São Paulo, Brazil). Hydrobiologia 434: 35–40. [Google Scholar]
  • Neury-Ormanni J, Vedrenne J, Wagner M, Jan G, Morin S. 2020. Micro-meiofauna morphofunctional traits linked to trophic activity. Hydrobiologia 847: 2725–2736. [Google Scholar]
  • Norf H, Arndt H, Weitere M. 2007. Impact of local temperature increase on the early development of biofilm-associated ciliate communities. Oecologia 151: 341–350. [PubMed] [Google Scholar]
  • Norf H, Arndt H, Weitere M. 2009a. Effects of resource supplements on mature ciliate biofilms: an empirical test using a new type of flow cell. Biofouling 25: 769–778. [PubMed] [Google Scholar]
  • Norf H, Arndt H, Weitere M. 2009b. Responses of biofilm-dwelling ciliate communities to planktonic and benthic resource enrichment. Microb Ecol 57: 687–700. [PubMed] [Google Scholar]
  • Norf H, Weitere M. 2010. Resource quantity and seasonal background alter warming effects on communities of biofilm ciliates. FEMS Microbiol Ecol 74: 361–370. [PubMed] [Google Scholar]
  • Palijan G, Fuks D. 2006. Alternation of factors affecting bacterioplankton abundance in the Danube River floodplain (Kopački Rit, Croatia). Hydrobiologia 560: 405–415. [Google Scholar]
  • Palijan G. 2010. Different impact of flood dynamics on the development of culturable planktonic and biofilm bacteria in floodplain lake. Pol J Ecol 58: 439–448. [Google Scholar]
  • Palijan G. 2012. Abundance and biomass responses of microbial food web components to hydrology and environmental gradients within a floodplain of the River Danube. Microb Ecol 64: 39–53. [PubMed] [Google Scholar]
  • Parry JD. 2004. Protozoan Grazing of Freshwater Biofilms. In Laskin AI, Bennett JW, Gadd GM, eds. Advances in Applied Microbiology, Vol. 54, Elsevier Academic Press, San Diego, USA, 167–196. [PubMed] [Google Scholar]
  • Peršić V, Čerba D, Bogut I, Horvatić J. 2010. Trophic State and Water Quality in the Danube Floodplain Lake (Kopački Rit Nature Park, Croatia) in Relation to Hydrological Connectivity. In Ansari AA, Singh Gill S, Lanza GR, Rast W, eds. Eutrophication: Causes, Consequences and Control, Springer, Dordrecht, Netherlands, 109–129. [Google Scholar]
  • Pratt JR, Cairns J Jr. 1985. Functional groups in the protozoa: roles in differing ecosystems. J Protozool 32: 415–423. [Google Scholar]
  • Primc-Habdija B, Habdija I, Plenković-Moraj A. 2001. Tufa deposition and periphyton overgrowth as factors affecting the ciliate community on travertine barriers in different current velocity conditions. Hydrobiologia 457: 87–96. [Google Scholar]
  • Primc-Habdija B, Habdija I, Matoničkin R, Špoljar M. 2005. Development of ciliate community on artificial substrates associated with vertical gradients of environmental conditions in a karstic lake. Arch Hydrobiol 164: 513–527. [Google Scholar]
  • Risse-Buhl U, Küsel K. 2009. Colonization dynamics of biofilm associated ciliate morphotypes at different flow velocities. Eur J Protistol 45: 64–76. [PubMed] [Google Scholar]
  • Rodrigues L, Bicudo DC. 2001. Similarity among periphyton algal communities in a lentic-lotic gradient of the upper Paraná river floodplain, Brazil. Rev bras Bot 24: 235–248. [Google Scholar]
  • Safi LSL, Fontoura NF, Severo HJ, Utz LRP. 2014. Temporal structure of the peritrich ciliate assemblage in a large Neotropical lake. Zool Stud 53: 17. [Google Scholar]
  • Schwarz U. 2005. Landschaftsökologische Charakterisierung des Kopački Rit unter besonderer Berücksichtigung von Flusslandschaftsformen sowie deren Genese und Typologie. Dissertation am Institut für Geographie, Universität Wien. [Google Scholar]
  • Sigee DC. 2005. Freshwater Microbiology: Biodiversity and Dynamic Interactions of Microorganisms in the Aquatic Environment, John Wiley & Sons, Ltd., West Sussex, England, 544 p. [Google Scholar]
  • Sikder MNA, Abdullah Al M, Hu G, Xu H. 2019. Colonization dynamics of periphytic ciliates at different water depths in coastal waters of the Yellow Sea, northern China. J Mar Biol Assoc UK 99: 1065–1073. [Google Scholar]
  • Sikder MNA, Xu H, Warren A. 2020. Colonization features of marine biofilm-dwelling protozoa in Chinese coastal waters of the Yellow Sea. Mar Life Sci Technol 2: 292–301. [Google Scholar]
  • Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu Rev Microbiol 56: 187–209. [PubMed] [Google Scholar]
  • Strickland JDH, Parsons TR. 1968. A practical handbook of sea-water analysis. Bull Fish Res Bord Can 167: 1–310. [Google Scholar]
  • Strüder-Kypke M. 1999. Periphyton and sphagnicolous protists of dystrophic bog lakes (Brandenburg, Germany). I. Annual cycles, distribution and comparison to other lakes. Limnologica 29: 393–406. [Google Scholar]
  • Strüder-Kypke M, Schönborn W. 1999. Periphyton and sphagnicolous protists of dystrophic bog lakes (Brandenburg, Germany). II. Characteristic species and trophy of the lakes. Limnologica 29: 407–424. [Google Scholar]
  • Tadić D, Vidaček Ž. 1999. Klimatske, hidrološke i pedološke značajke. In Mihaljević M, Getz D, Tadić Z, Živanović B, Gucunski D, Topić J, Kalinović I, Mikuška J, eds. Kopački rit − Pregled istraživanja i bibliografija, Hrvatska akademija znanosti i umjetnosti, Zagreb, 23–28. [Google Scholar]
  • Ter Braak CJF, Šmilauer P. 2002. CANOCO Reference Manual and CanoDraw for Windows User's Guide. Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA. [Google Scholar]
  • Tockner K, Pennetzdorfer D, Reiner N, Schiemer F, Ward JV. 1999. Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshw Biol 41: 521–535. [Google Scholar]
  • UNESCO, 1966. Determinations of photosynthetic pigments in seawater, Report of SCOR-UNESCO Working Group 17, Monogr Oceanogr Meth, Paris, 69 p. [Google Scholar]
  • Van der Valk A. 2006. The Biology of Freshwater Wetlands, Oxford University Press, Oxford, UK, 173 p. [Google Scholar]
  • Vasudevan R. 2014. Biofilms: microbial cities of scientific significance. J Microbiol Exp 1: 84–98. [Google Scholar]
  • Vermaat JE. 2005. Periphyton Dynamics and Influencing Factors. In Azim ME, Verdegem MCJ, van Dam AA, Beveridge MCM, eds. Periphyton: Ecology, Exploitation and Management, CAB International, CABI Publishing, Wallingford, Oxfordshire, UK, 35–49. [Google Scholar]
  • Verni F, Gualtieri P. 1997. Feeding behaviour in ciliated protists. Micron 28: 487–504. [Google Scholar]
  • Vidaković J, Bogut I, Borić E, Zahirović Ž. 2002. Hydrobiological research in the Kopački Rit Nature Park in the period November 1997–October 2001. Hrvatske vode/Croat Wat 10: 127–144. [Google Scholar]
  • Vidaković J, Palijan G, Čerba D. 2011. Relationship between nematode community and biomass and composition of periphyton developing on artificial substrates in floodplain lake. Pol J Ecol 59: 577–588. [Google Scholar]
  • Vidaković J, Turković Čakalić I, Stević F, Čerba D. 2012. The influence of different hydrological conditions on periphytic invertebrate communities in a Danubian floodplain. Fundam Appl Limnol 181: 59–72. [Google Scholar]
  • Vidaković J, Turković Čakalić I, Vlaičević B, Galir Balkić A, Turić N. 2017. Biodiversity of aquatic invertebrates in association with natural substrates in a floodplain lake (the Kopački Rit Nature Park, Croatia). In Ozimec S, Bogut I, Rožac V, Stević F, Bolšec B, Baković A, eds. Book of abstracts of the 6th symposium Kopački Rit: Past, Present, Future 2017, Public Institution Kopački Rit Nature Park, Tikveš, 103–104. [Google Scholar]
  • Villanueva VD, Schwartz FJT, Romani AM. 2011. Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects. Biofouling 27: 59–71. [PubMed] [Google Scholar]
  • Vlaičević B, Vidaković J, Čerba D. 2017. The colonization and succession patterns of the periphytic ciliate community in a temperate floodplain lake. Biologia 72: 305–318. [Google Scholar]
  • Weitere M, Schmidt-Denter K, Arndt H. 2003. Laboratory experiments on the impact of biofilms on the plankton of a large river. Freshw Biol 48: 1983–1992. [Google Scholar]
  • Weitere M, Erken M, Majdi N, Arndt H, Norf H, Reinshagen M, et al. 2018. The food web perspective on aquatic biofilms. Ecol Monogr 88: 543–559. [Google Scholar]
  • Wetzel RG. 2001. Limnology. Lake and River Ecosystems, third ed, Academic Press, San Diego, 1006 p. [Google Scholar]
  • Wetzel RG. 2005. Periphyton in the Aquatic Ecosystem and Food Webs. In Azim ME, Verdegem MCJ, van Dam AA, Beveridge MCM, eds. Periphyton: Ecology, Exploitation and Management, CAB International, CABI Publishing, Wallingford, Oxfordshire, UK, 51–69. [Google Scholar]
  • Wey JK, Jürgens K, Weitere M. 2012. Seasonal and successional influences on bacterial community composition exceed that of protozoan grazing in river biofilms. Appl Environ Microbiol 78: 2013–2024. [PubMed] [Google Scholar]
  • Wey JK, Norf H, Arndt H, Weitere M. 2009. Role of dispersal in shaping communities of ciliates and heterotrophic flagellates within riverine biofilms. Limnol Oceanogr 54: 1615–1626. [Google Scholar]
  • Wu Y. 2017. Periphyton: Functions and Application in Environmental Remediation. Elsevier Inc. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokio, 434 p. [Google Scholar]
  • Yang Z, Xu Y, Xu G, Xu H. 2016. Carbon flux of trophic-functional groups within the colonization process of biofilm-dwelling ciliates in marine ecosystems. J Mar Biol Assoc UK 96: 1313–1318. [Google Scholar]
  • Zhang W, Xu H, Jiang Y, Zhu M, Al-Rasheid KAS. 2012. Colonization dynamics in trophic-functional structure of periphytic protist communities in coastal waters. Mar Biol 159: 735–748. [Google Scholar]
  • Zhang W, Xu H, Jiang Y, Zhu M, Al-Rasheid KAS. 2013. Colonization dynamics of periphytic ciliate communities on an artificial substratum in coastal waters of the Yellow Sea, northern China. J Mar Biol Assoc UK 93: 57–68. [Google Scholar]
  • Žuna Pfeiffer T, Mihaljević M, Stević F, Špoljarić D. 2013. Periphytic algae colonization driven by variable environmental components in a temperate floodplain lake. Ann Limnol − Int J Lim 49: 179–190. [Google Scholar]
  • Žuna Pfeiffer T, Mihaljević M, Špoljarić D, Stević F, Plenković-Moraj A. 2015. The disturbance-driven changes of periphytic algal communities in a Danubian floodplain lake. Knowl Manag Aquat Ecosyst 416: 02. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.