Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 422, 2021
Article Number 30
Number of page(s) 12
DOI https://doi.org/10.1051/kmae/2021030
Published online 23 August 2021
  • Auderset Joye D, Castella E, Lachavanne JB. 2002. Occurrence of Characeae in Switzerland over the last two centuries (1800–2000). Aquat Bot 72: 369–385. [Google Scholar]
  • Auderset Joye D, Rey-Boissezon D. 2015. Will charophyte species increase or decrease their distribution in a changing climate? Aquat Bot 120: 73–83. [Google Scholar]
  • Azzella MM. 2014. Italian volcanic lakes: a diversity hotspot and refuge for European charophytes. J Limnol 73: 502–510. [Google Scholar]
  • Azzella MM, Abdelahad N. 2011. Une station actuelle de Lychnothamnus barbatus (Charophyceae) en Italie Centrale: le Lac de Martignano (Latium). Cryptogamie Algol 32: 301–307. [Google Scholar]
  • Azzella MM, Bresciani M, Nizzoli D, Bolpagni R. 2017. Aquatic vegetation in deep lakes: Macrophyte co-occurrence patterns and environmental determinants. J Limnol 76: 97–108. [Google Scholar]
  • Baastrup-Spohr L, Iversen LL, Borum J, Sand-Jensen K. 2015. Niche specialization and functional traits regulate the rarity of charophytes in the Nordic countries. Aquat Conserv 25: 609–621. [Google Scholar]
  • Baastrup-Spohr L, Iversen LL, Dahl-Nielsen J, Sand-Jensen K. 2013. Seventy years of changes in the abundance of Danish charophytes. Freshw Biol 58: 1682–1693. [Google Scholar]
  • Blaženčić J, Stevanović B, Blaženčić Z, Stevanović V. 2006b. Red data list of charophytes in the Balkans. Biodivers Conserv 15: 3445–3457. [Google Scholar]
  • Blaženčić J, Stevanović B, Blaženčić Z, Stevanović V. 2006a. Distribution and ecology of charophytes recorded in the West and Central Balkans. Cryptogamie Algol 27: 311–322. [Google Scholar]
  • Blindow I. 1988. Phosphorus toxicity in Chara. Aquat Bot 32: 393–395. [Google Scholar]
  • Blindow I. 1992. Decline of charophytes during eutrophication − comparison with angiosperms. Freshw Biol 28: 9–14. [Google Scholar]
  • Blindow I, Hargeby A, Andersson G. 2002. Seasonal changes of mechanisms maintaining clear water in shallow lake with abundant Chara vegetation. Aquat Bot 72: 315–334. [Google Scholar]
  • Boissezon A, Auderset Joye D, Garcia T. 2018. Temporal and spatial changes in population structure of the freshwater macroalga Nitellopsis obtusa (Desv.) J. Groves. Botany Lett 165: 103–114. [Google Scholar]
  • Braun-Blanquet J. 1964. Pflanzensoziologie. Wien, New York: Springer. [Google Scholar]
  • Brzeg A, Wojterska M. 2001. Plant communities in Wielkopolska: the state of knowledge and threats. p. 39– 110. In: Wojterska M. ed. Flora and Vegetation of Wielkopolska and South-Pomerania Lakeland. Guide book of 52. Reunion of Polish Botanical Society, Poznań (in Polish). [Google Scholar]
  • Brzozowski M, Pelechaty M, Pietruczuk K. 2018. Co-occurrence of the charophyte Lychnothamnus barbatus with higher trophy submerged macrophyte indicators. Aquat Bot 151: 51–55. [Google Scholar]
  • Ciecierska H, Kolada A. 2014. ESMI: a macrophyte index for assessing the ecological status of lakes. Environ Monit Assess 186: 5501–5517. [PubMed] [Google Scholar]
  • Crawford SA. 1977. Chemical, physical and biological changes associated with Chara succession in farm ponds. Hydrobiologia 55: 209–217. [Google Scholar]
  • Dąmbska I. 1964. Charophyta − ramienice. In: K. Starmach (ed.), Freshwater flora of Poland. Vol 13. PWN, Warsaw (in Polish). [Google Scholar]
  • Dengler J, Chytry M, Ewald J. 2008. Phytosociology. In: S.E. Jřrgensen, B.D. Fath (eds.), General Ecology. Encyclopedia of Ecology. Vol. 4, Oxford: Elsevier, pp. 2767–2779. [Google Scholar]
  • Dolédec S, Chessel D, Gimaret-Carpentier C. 2000. Niche separation in community analysis: a new method. Ecology 81: 2914. [Google Scholar]
  • EU. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 Oct. 2000 establishing a framework for Community action in the field of water policy. OJEC L 327/1. [Google Scholar]
  • Hernández-Fariñas T, Bacher C, Soudant D, Belin C, Barillé L. 2015. Assessing phytoplankton realized niches using a French national phytoplankton monitoring network. Estuar Coast Shelf Sci 159: 15–27. [Google Scholar]
  • IUCN 2001. IUCN Red List Categories and Criteria. IUCN: Gland and Cambridge. [Google Scholar]
  • Jensen S. 1977. An objective method for sampling the macrophyte vegetation in lakes. Vegetatio 33: 107–118. [Google Scholar]
  • Karasiewicz S. 2018. Subniche Documentation for the Within Outlying Mean Indexes calculations (WitOMI). Retrieved from https://github.com/KarasiewiczStephane/WitOMI (accessed May 2021). [Google Scholar]
  • Karasiewicz S, Dolédec S, Lefebvre S. 2017. Within outlying mean indexes: refining the OMI analysis for the realized niche decomposition. PeerJ 5: e 3364. [Google Scholar]
  • Kleyer M, Dray S, Bello F, Lepš J, Pakeman RJ, Strauss B, Lavorel S. 2012. Assessing species and community functional responses to environmental gradients: which multivariate methods? J Veg Sci 23: 805–821. [Google Scholar]
  • Kolada A. 2009. Is the Lychnothamnus barbatus (Meyen) Leonhardi 1863 a good indicator of water quality? A new locality of the species in Górskie Lake near Gostynin (Central Poland). Oceanol. Hydrobiol. St. 38, Serie: Phycologica Polonica 2: 39–43. [Google Scholar]
  • Kolada A. 2010. The use of aquatic vegetation in the lake assessment: testing the sensitivity of macrophyte metrics to anthropogenic pressures and water quality. Hydrobiologia 656: 133–147. [Google Scholar]
  • Kolada A. 2014. The effect of lake morphology on aquatic vegetation development and changes under the influence of eutrophication. Ecol Indic 38: 282–293. [Google Scholar]
  • Kolada A, Ciecierska H, Ruszczyńska J, Dynowski P. 2014a. Sampling techniques and inter-surveyor variability as sources of uncertainty in Polish macrophyte based metric for lake ecological status assessment. Hydrobiologia 737: 256–279. [Google Scholar]
  • Kolada A, Willby N, Dudley B, Nõges P, Søndergaard M, Hellsten S, Karus K. 2014b. The applicability of macrophyte compositional metrics for assessing eutrophication in European lakes. Ecol Indic 45: 407–415. [Google Scholar]
  • Krause W. 1981. Characeen als Bioindikatoren für den Gewässerzustand. Limnologica 13: 399–418. [Google Scholar]
  • Krause W. 1997. Charales (Charophyceae). In: H. Ettl, G. Gärtner, H. Heynig, D. Mollenhauer (eds). Süsswasserflora von Mitteleuropa. Gustav Fisher: Stuttgart; 1–202 (in German). [Google Scholar]
  • Kufel L, Kufel I. 2002. Chara beds acting as nutrient sinks in shallow lakes − a review. Aquat Bot 72: 249–260. [Google Scholar]
  • Kufel L, Ozimek T. 1994. Can Chara control phosphorus cycling in Lake Łuknajno (Poland). Hydrobiologia 275/276: 277–283. [Google Scholar]
  • Lambert-Servien E, Clemenceau G, Gabory O, Douillard E, Haury J. 2006. Stoneworts (Characeae) and associated macrophyte species as indicators of water quality and human activities in the Pays-de-la-Loire region, France. Hydrobiologia 570: 107–115. [Google Scholar]
  • Larkin DJ, Monfils AK, Boissezon A, Sleith RS, Skawinski PM, Welling CH, Karol KG. 2018. Biology, ecology, and management of starry stonewort (Nitellopsis obtusa; Characeae): a Red-listed Eurasian green alga invasive in North America. Aquat Bot 148: 15–24. [Google Scholar]
  • Matuszkiewicz W. 2002. A guide book to identification plant communities in Poland. Warsaw: PWN (in Polish). [Google Scholar]
  • Meynard CN, Pillay N, Perrigault M, Caminade P, Ganem G. 2012. Evidence of environmental niche differentiation in the striped mouse (Rhabdomys sp.): inference from its current distribution in southern Africa. Ecol Evol 2: 1008–1023. [PubMed] [Google Scholar]
  • Middleboe AL, Markager S. 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshw Biol 37: 553–568. [Google Scholar]
  • Ozimek T, Kowalczewski A. 1984. Long-term changes of the submerged macrophytes in eutrophic lake Mikołajskie (North Poland). Aquat Bot 19: 1–11. [Google Scholar]
  • Palomares F, Fernández N, Roques S, Chávez C, Silveira L, Keller C, Andrados B. 2016. Fine-scale habitat segregation between two ecologically similar top predators. PLoS ONE 11: e0155626. [PubMed] [Google Scholar]
  • Pełechaty M, Brzozowski M. 2016. Ecological plasticity of Lychnothamnus barbatus: implications for biomonitoring of contemporary aquatic environments and palaeoenvironmental reconstructions. Book of abstracts from Conference: XXXVth International Conference of the Polish Phycological Society ‘Algae in anthropogenically transformed ecosystems’, Łódź-Stryków, Poland. [Google Scholar]
  • Pełechaty M, Pronin E, Pukacz A. 2014. Charophyte occurrence in Ceratophyllum demersum stands. Hydrobiologia 737: 111–120. [Google Scholar]
  • Pełechaty M, Gąbka M, Sugier P, Pukacz A, Chmiel S, Ciecierska H, Owsianny PM. 2009. Lychnothamnus barbatus in Poland: habitats and associations. Charophytes 2: 13–18. [Google Scholar]
  • Pełechaty M, Pukacz A. 2008. Guide to identify charophyte species (Characeae) in rivers and lakes. Biblioteka Monitoringu Środowiska, Warszawa (in Polish). [Google Scholar]
  • Poikane S, Portielje R, Denys L, Elferts D, Kelly M, Kolada A, van den Berg M. 2018. Macrophyte assessment in European lakes: Divergent approaches but convergent views of ‘good’ ecological status. Ecol Indic 94: 185–197. [PubMed] [Google Scholar]
  • Portielje R, Bertrin V, Denys L, Grinberga L, Karottki I, Kolada A, Poikane S. 2014. Water Framework Directive Intercalibration Technical Report. Central Baltic Lake Macrophyte Ecological Assessment Methods. Publications Office of the European Union, Luxembourg, Ispra. [Google Scholar]
  • Rey-Boissezon A, Auderset Joye D. 2015. Habitat requirements of charophytes − evidence of species discrimination through distribution analysis. Aquat Bot 120: 84–91. [Google Scholar]
  • Schwarz AM, de Winton M, Hawes I. 2002. Species-specific depth zonation in New Zealand charophytes as a function of light availability. Aquat Bot 72: 209–217. [Google Scholar]
  • Schwarz AM, Hawes I, Hovard-Williams C. 1999. Mechanisms underlying the decline and recovery of a Characean community in fluctuating light in a large oligotrophic lake. Aust J Bot 47: 325–336. [Google Scholar]
  • Siemińska J, Bąk M, Dziedzic J, Gąbka M, Gregorowicz P, Mrozińska T, Witkowski A. 2006. Red list of the algae in Poland. In: Z. Mirek, K. Zarzycki, W. Wojewoda, Z. Szeląg (eds.), Red list of plants and fungi in Poland. Kraków: Szafer Institute of Botany, Polish Academy of Sciences. [Google Scholar]
  • Søndergaard M, Johansson LS, Lauridsen TL, Jørgensen TB, Liboriussen L, Jeppesen E. 2010. Submerged macrophytes as indicators of the ecological quality of lakes. Freshw Biol 55: 893–908. [Google Scholar]
  • Søndergaard M, Phillips G, Hellsten S, Kolada A, Ecke F, Mäemets H, Mjelde M, Azzella MM, Oggioni A. 2013. Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia 704: 165–177. [Google Scholar]
  • Soszka H, Ochocka A. 2011. Lakes. Supporting physicochemical elements. p. 249–256. In: H. Soszka (ed.), Ecological status assessment of the waters in the Wel river catchment. Guidelines for integrated assessment of ecological status of rivers and lakes to support river basin management plans. Institute of Inland Fisheries, Olsztyn (in Polish with English summary). [Google Scholar]
  • StatSoft Inc. 2011. STATISTICA (data analysis software system), version 10. www.statsoft.com. [Google Scholar]
  • Stewart NF, Church JM. 1992. Red Data Book of Britain and Ireland: Stoneworts. Joint Nature Conservation Committee, Peterborough 235 p. [Google Scholar]
  • Sugier P, Pełechaty M, Gąbka M, Owsianny PM, Pukacz A, Ciecierska H, Kolada A. 2010. Lychnothamnus barbatus: global history and distribution in Poland. Charophytes 2: 19–24. [Google Scholar]
  • Thuiller W, Lavorel S, Midgley G, Lavergne S, Rebelo T. 2004. Relating plant traits and species distributions along bioclimatic gradients for Leucadendron taxa. Ecology 85: 1688–1699. [Google Scholar]
  • Urbaniak J, Gąbka M. 2014. Polish Charophytes. An illustrated guide to identification. Wrocław: Wrocław University of Environmental and Life Sciences Press. [Google Scholar]
  • van den Berg MS. 1999. Charophyte colonization in shallow lakes: processes, ecological effects and implications for lake management. PhD Thesis, Free University, Amsterdam 138 p. [Google Scholar]
  • van den Berg MS, Scheffer M, van Nes E, Coops H. 1999. Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 408/409: 335–342. [Google Scholar]
  • van Donk E, van de Bund WJ. 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72: 261–274. [Google Scholar]
  • Vesić A, Blaženčić J, Šinžar-Sekulić J. 2016. Contribution to knowledge of the Charophytes (Charales) of Vojvodina (Serbia) − 20 years after the first review. Bot Serb 40: 237–247. [Google Scholar]
  • Willner W. 2006. The association concept revisited. Phytocoenologia 36: 67–76. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.