Open Access
Issue |
Knowl. Manag. Aquat. Ecosyst.
Number 422, 2021
Topical Issue on Fish Ecology
|
|
---|---|---|
Article Number | 4 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/kmae/2021004 | |
Published online | 18 February 2021 |
- Aarestrup K, Jepsen N, Rasmussen G, Okland F. 1999. Movements of two strains of radio tagged Altlantic salmon, Salmo salar L., smolts through a reservoir. Fish Manag Ecol 6: 97–107. [Google Scholar]
- Arevalo E, Lassalle G, Tétard S, Maire A, Sauquet E, Lambert P, Paumier A, Villeneuve B, Drouineau H. 2020. An innovative bivariate approach to detect joint temporal trends in environmental conditions: Application to large French rivers and diadromous fish. Sci Total Environ 141260. [PubMed] [Google Scholar]
- Babin AB, Ndong M, Haralampides K, Peake S, Jones RA, Curry RA, Linnansaari T. 2020. Migration of Atlantic salmon (Salmo salar) smolts in a large hydropower reservoir. Can J Fish Aquat Sci. [Google Scholar]
- Bach JM, Bruyère F, Poupard PY, Rancon J. 2000. Etude du franchissement (dévalaison − montaison) du complexe hydroélectrique de Poutès − Monistrol par les saumons en 1999. LOGRAMI, Saint Pourçain sur Sioule. [Google Scholar]
- Bach JM, Caut I, Lelièvre M, Viallard J. 2004. Suivi de la dévalaison 2004 des saumoneaux au droit du barrage de Poutès. LOGRAMI, Saint Pourçain sur Sioule. [Google Scholar]
- Bach JM, Leon C, Parouty T, Defours A, Baisez A. 2015. Suivi de la dévalaison 2014 des saumoneaux au droit du barrage de Poutès. LOGRAMI, Saint Pourçain sur Sioule. [Google Scholar]
- Baisez A, Bach J-M., Leon C, Parouty T, Terrade R, Hoffmann M, Laffaille P. 2011. Migration delays and mortality of adult Atlantic salmon Salmo salar en route to spawning grounds on the River Allier, France. Endanger Species Res 15: 265–270. [Google Scholar]
- Birnie‐Gauvin K, Aarestrup K. 2019. A call for a paradigm shift: Assumed‐to‐be premature migrants actually yield good returns. Ecol Freshw Fish 28: 62–68. [Google Scholar]
- Calles O, Karlsson S, Vezza P, Comoglio C, Tielman J. 2013. Success of a low‐sloping rack for improving downstream passage of silver eels at a hydroelectric plant. Freshw Biol 58: 2168–2179. [Google Scholar]
- CNSS. 2013. Suivi de la dévalaison dans la zone refuge à l'aide de tambours rotatifs à Alleyras et Chanteuges Année 2013. Conservatoire National du Saumon Sauvage, Chanteuges. [Google Scholar]
- CNSS. 2014. Suivi de la dévalaison dans la zone refuge à l'aide de tambours rotatifs à Alleyras et Chanteuges. Année 2014. Conservatoire National du Saumon Sauvage, Chanteuges. [Google Scholar]
- Courret D, Larinier M. 2008. Guide pour la conception de prises d'eau Ichtyocompatibles pour les petites centrales hydroélectriques. GHAAPPE. [Google Scholar]
- Coutant CC, Whitney RR. 2000. Fish Behavior in Relation to Passage through Hydropower Turbines: A Review. Trans Am Fish Soc 129: 351–380. [Google Scholar]
- Crozier LG, Hutchings JA. 2014. Plastic and evolutionary responses to climate change in fish. Evol Appl 7: 68–87. [CrossRef] [PubMed] [Google Scholar]
- Cuinat R. 1988. Atlantic Salmon in Extensive French River System: Theb Loire-Allier. Atlantic Salmon, Springer., 389–399. [Google Scholar]
- Friedland KD, MacLean JC, Hansen LP, Peyronnet AJ, Karlsson L, Reddin DG, Ó Maoiléidigh N, McCarthy JL. 2009. The recruitment of Atlantic salmon in Europe. ICES J Mar Sci 66: 289–304. [Google Scholar]
- Gauld NR, Campbell RNB, Lucas MC. 2013. Reduced flow impacts salmonid smolt emigration in a river with low-head weirs. Sci Total Environ 458: 435–443. [PubMed] [Google Scholar]
- Hansen L, Jonsson B, Døving K. 1984. Migration of wild and hatchery reared smolts of Atlantic salmon, Salmo salar L., through lakes. J Fish Biol 25: 617–623. [Google Scholar]
- Haraldstad T, Höglund E, Kroglund F, Haugen TO, Forseth T. 2018. Common mechanisms for guidance efficiency of descending Atlantic salmon smolts in small and large hydroelectric power plants. River Res Appl 34: 1179–1185. [Google Scholar]
- Havn TB, Thorstad EB, Teichert MAK, Sæther SA, Heermann L, Hedger RD, Tambets M, Diserud OH, Borcherding J, Økland F. 2018. Hydropower-related mortality and behaviour of Atlantic salmon smolts in the River Sieg, a German tributary to the Rhine. Hydrobiologia 805: 273–290. [Google Scholar]
- Huusko R, Hyvärinen P, Jaukkuri M, Mäki-Petäys A, Orell P, Erkinaro J. 2018. Survival and migration speed of radio-tagged Atlantic salmon (Salmo salar) smolts in two large rivers: one without and one with dams. Can J Fish Aquat Sci 75: 1177–1184. [Google Scholar]
- Imbert H, Martin P, Rancon J, Graffin V, Dufour S. 2013. Evidence of late migrant smolts of Atlantic salmon (Salmo salar) in the Loire-Allier System, France. Cybium 37: 5–14. [Google Scholar]
- Isaak DJ, Young MK, Nagel DE, Horan DL, Groce MC. 2015. The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century. Glob Change Biol 21: 2540–2553. [Google Scholar]
- Jepsen N, Aarestrup K, Økland F, Rasmussen G. 1998. Survival of radiotagged Atlantic salmon (Salmo salar L.) and trout (Salmo trutta L.) smolts passing a reservoir during seaward migration. Hydrobiologia 371: 347. [Google Scholar]
- Jonsson B, Jonsson N. 2009. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. J Fish Biol 75: 2381–2447. [CrossRef] [PubMed] [Google Scholar]
- Jonsson N, Jonsson B. 2014. Time and size at seaward migration influence the sea survival of Salmo salar. J Fish Biol 84: 1457–1473. [PubMed] [Google Scholar]
- Kuczynski L, Chevalier M, Laffaille P, Legrand M, Grenouillet G. 2017. Indirect effect of temperature on fish population abundances through phenological changes. PLoS One 12: e0175735. [Google Scholar]
- Larinier M, Dartiguelongue J. 1989. La circulation des poissons migrateurs: le transit a travers les turbines des installations hydroélectriques. Bull Fr Pêche Piscic 312–313: 1–94. [Google Scholar]
- Larinier M, Travade F. 2002. Downstream migration: problems and facilities. Bull Fr Pêche Piscic 364 supplément: 181–207. [CrossRef] [Google Scholar]
- Larinier M, Dumond L, Lagarrigue T, Frey A, Travade F. 2020. Performance of a large partial-depth guide wall to divert downstream migrating Atlantic salmon smolts at Tuilières dam, Dordogne River. Knowl Manag Aquat Ecosyst 15. [Google Scholar]
- Limburg KE, Waldman JR. 2009. Dramatic declines in North Atlantic diadromous fishes. BioScience 59: 955–965. [Google Scholar]
- Lucas MC, Baras E. 2001. Migration of Freshwater Fishes. [Google Scholar]
- Marschall EA, Mather ME, Parrish DL, Allison GW, McMenemy JR. 2011. Migration delays caused by anthropogenic barriers: modeling dams, temperature, and success of migrating salmon smolts. Ecol Appl 21: 3014–3031. [Google Scholar]
- McCormick SD, Hansen LP, Quinn TP, Saunders RL. 1998. Movement, migration, and smolting of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 55: 77–92. [Google Scholar]
- McCormick SD, Cunjak RA, Dempson B, O'Dea MF, Carey JB. 1999. Temperature-related loss of smolt characteristics in Atlantic salmon (Salmo salar) in the wild. Can J Fish Aquat Sci 56: 1649–1667. [Google Scholar]
- Minster AM, Bomassi P. 1999. Repérage et évaluation des surfaces potentielles de développement de juvéniles de saumons atlantiques. Proposition d'un modèle de gestion des stocks sur les bassins de l'Allier et de l'Arroux. LOGRAMI/CSP D R6. [Google Scholar]
- Morita K. 2019. Earlier migration timing of salmonids: an adaptation to climate change or maladaptation to the fishery? Can J Fish Aquat Sci 76: 475–479. [Google Scholar]
- Mueller RP, Simmons MA. 2008. Characterization of gatewell orifice lighting at the Bonneville Dam second powerhouse and compendium of research on light guidance with juvenile salmonids. Pacific Northwest National Laboratory (PNNL), Richland, WA (US). [Google Scholar]
- Nyqvist D, Greenberg LA, Goerig E, Calles O, Bergman E, Ardren WR, Castro‐Santos T. 2017. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam. Ecol Freshw Fish 26: 707–718. [Google Scholar]
- Nyqvist D, Elghagen J, Heiss M, Calles O. 2018. An angled rack with a bypass and a nature-like fishway pass Atlantic salmon smolts downstream at a hydropower dam. Mar Freshw Res 69: 1894–1904. [Google Scholar]
- Otero J, L'Abée‐Lund JH, Castro‐Santos T, Leonardsson K, Storvik GO, Jonsson B, Dempson B, Russell IC, Jensen AJ, Baglinière J‐L. 2014. Basin‐scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Glob Change Biol 20: 61–75. [Google Scholar]
- Ovidio M, Dierckx A, Bunel S, Grandry L, Spronck C, Benitez J-P. 2017. Poor performance of a retrofitted downstream bypass revealed by the analysis of approaching behaviour in combination with a trapping system. River Res Appl 33: 27–36. [Google Scholar]
- Perry RW, Romine JG, Adams NS, Blake AR, Burau JR, Johnston SV, Liedtke TL. 2014. Using a non‐physical behavioural barrier to alter migration routing of juvenile chinook salmon in the sacramento–san joaquin river delta. River Res Appl 30: 192–203. [Google Scholar]
- Pracheil BM, DeRolph CR, Schramm MP, Bevelhimer MS. 2016. A fish-eye view of riverine hydropower systems: the current understanding of the biological response to turbine passage. Rev Fish Biol Fish 26: 153–167. [Google Scholar]
- Roy R, Beguin J, Argillier C, Tissot L, Smith F, Smedbol S, De-Oliveira E. 2014. Testing the VEMCO Positioning System: spatial distribution of the probability of location and the positioning error in a reservoir. Anim Biotelemetry 2: 1–7. [Google Scholar]
- Schwinn M, Aarestrup K, Baktoft H, Koed A. 2017. Survival of migrating sea trout (Salmo trutta) smolts during their passage of an artificial lake in a Danish lowland stream. River Res Appl 33: 558–566. [Google Scholar]
- Schwinn M, Baktoft H, Aarestrup K, Lucas MC, Koed A. 2018. Telemetry observations of predation and migration behaviour of brown trout (Salmo trutta) smolts negotiating an artificial lake. River Res Appl 34: 898–906. [Google Scholar]
- Schwinn M, Baktoft H, Aarestrup K, Koed A. 2019. Artificial lakes delay the migration of brown trout Salmo trutta smolts: a comparison of migratory behaviour in a stream and through an artificial lake. J Fish Biol 94: 745–751. [PubMed] [Google Scholar]
- Silva AT, Lucas MC, Castro‐Santos T, Katopodis C, Baumgartner LJ, Thiem JD, Aarestrup K, Pompeu PS, O'Brien GC, Braun DC. 2018. The future of fish passage science, engineering, and practice. Fish Fish 19: 340–362. [Google Scholar]
- Stich DS, Bailey MM, Holbrook CM, Kinnison MT, Zydlewski JD. 2015. Catchment-wide survival of wild-and hatchery-reared Atlantic salmon smolts in a changing system. Can J Fish Aquat Sci 72: 1352–1365. [Google Scholar]
- Sykes GE, Johnson CJ, Shrimpton JM. 2009. Temperature and flow effects on migration timing of Chinook salmon smolts. Trans Am Fish Soc 138: 1252–1265. [Google Scholar]
- Teichert N, Benitez J, Dierckx A, Tétard S, de Oliveira E, Trancart T, Feunteun E, Ovidio M. 2020a. Development of an accurate model to predict the phenology of Atlantic salmon smolt spring migration. Aquat Conserv Mar Freshw Ecosyst . [Google Scholar]
- Teichert N, Tétard S, Trancart T, Feunteun E, Acou A, de Oliveira E. 2020b. Resolving the trade-off between silver eel escapement and hydropower generation with simple decision rules for turbine shutdown. J Environ Manage 261: 110212. [PubMed] [Google Scholar]
- Tétard S, Lemaire M, De Oliveira E, Martin P. 2016a. Use of 2D acoustic telemetry to study the behaviour of atlantic salmon smolts (Salmo salar) approaching Poutès Dam (Allier River, France). Paper 26123 in, Tétard S, Lemaire M, De Oliveira E, Martin P (eds.). The University of Melbourne, Australia. [Google Scholar]
- Tétard S, Lemaire M, Martin A, De Oliveira E. 2016b. Comportement des smolts de saumon atlantique (Salmo salar) au voisinage du barrage de Poutès (Allier, France). Bilan des études de télémétrie acoustique réalisées en 2014 et 2015. EDF R&D. [Google Scholar]
- Tétard S, Maire A, Lemaire M, De Oliveira E, Martin P, Courret D. 2019. Behaviour of Atlantic salmon smolts approaching a bypass under light and dark conditions: Importance of fish development. Ecol Eng 131: 39–52. [Google Scholar]
- Thorstad EB, Økland F, Aarestrup K, Heggberget TG. 2008. Factors affecting the within-river spawning migration of Atlantic salmon, with emphasis on human impacts. Rev Fish Biol Fish 18: 345–371. [Google Scholar]
- Thorstad EB, Whoriskey F, Uglem I, Moore A, Rikardsen AH, Finstad B. 2012. A critical life stage of the Atlantic salmon Salmo salar: behaviour and survival during the smolt and initial post‐smolt migration. J Fish Biol 81: 500–542. [CrossRef] [PubMed] [Google Scholar]
- Thorstad EB, Havn TB, Sæther SA, Heermann L, Teichert MAK, Diserud OH, Tambets M, Borcherding J, Økland F. 2017. Survival and behaviour of Atlantic salmon smolts passing a run‐of‐river hydropower facility with a movable bulb turbine. Fish Manag Ecol 24: 199–207. [Google Scholar]
- Tomanova S, Courret D, Alric A. 2017. Protecting fish from entering turbines: the efficiency of a low-sloping rack for downstream migration of Atlantic salmon smolts. La Houille Blanche 1: 11–13. [Google Scholar]
- Tomanova S, Courret D, Alric A, De Oliveira E, Lagarrigue T, Tétard S. 2018. Protecting efficiently sea-migrating salmon smolts from entering hydropower plant turbines with inclined or oriented low bar spacing racks. Ecol Eng 122: 143–152. [Google Scholar]
- Venditti DA, Rondorf DW, Kraut JM. 2000. Migratory behavior and forebay delay of radio-tagged juvenile fall Chinook salmon in a lower Snake River impoundment. North Am J Fish Manag 20: 41–52. [Google Scholar]
- Whalen KG, Parrish DL, McCormick SD. 1999. Migration timing of Atlantic salmon smolts relative to environmental and physiological factors. Trans Am Fish Soc 128: 289–301. [Google Scholar]
- Williams JG, Armstrong G, Katopodis C, Larinier M, Travade F. 2012. Thinking like a fish: a key ingredient for development of effective fish passage facilities at river obstructions. River Res Appl 28: 407–417. [Google Scholar]
- Winter J. 1996. Advances in underwater biotelemetry. Fish Tech 2nd Ed Am Fish Soc Bethesda Md 555–590. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.