Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 421, 2020
Article Number 46
Number of page(s) 7
DOI https://doi.org/10.1051/kmae/2020038
Published online 11 December 2020
  • Boets P, Lock K, Goethals PL, Janssen CR, De Schamphelaere KA. 2012. A comparison of the short-term toxicity of cadmium to indigenous and alien gammarid species. Ecotoxicology 21: 1135–1144. [CrossRef] [PubMed] [Google Scholar]
  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10. [Google Scholar]
  • Bouckaert RR, Drummond AJ. 2017. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17: 42. [CrossRef] [PubMed] [Google Scholar]
  • Casanovas‐Vilar I, García‐Paredes I, Alba DM, van den Hoek Ostende LW, Moyà‐Solà S. 2010. The European Far West: Miocene mammal isolation, diversity and turnover in the Iberian Peninsula. J. Biogeogr . 37: 1079–1093. [Google Scholar]
  • Catta J-D. 1878. Note sur le Gammarus berilloni (n. sp.). Bull. Soc. Borda. 1: 69–73. [Google Scholar]
  • Copilaş‐Ciocianu D, Petrusek A. 2015. The southwestern Carpathians as an ancient centre of diversity of freshwater gammarid amphipods: insights from the Gammarus fossarum species complex. Mol. Ecol . 24: 3980–3992. [CrossRef] [PubMed] [Google Scholar]
  • Copilaş-Ciocianu D, Sidorov D, Gontcharov A. 2019. Adrift across tectonic plates: molecular phylogenetics supports the ancient Laurasian origin of old limnic crangonyctid amphipods. Org. Divers. Evol. 19: 191–207. [Google Scholar]
  • Costa FO, DeWaard JR, Boutillier J, Ratnasingham S, Dooh RT, Hajibabaei M, Hebert PD. 2007. Biological identifications through DNA barcodes: the case of the Crustacea. Can. J. Fish. Aquat. Sci . 64: 272–295. [Google Scholar]
  • Cristescu ME, Hebert PD, Onciu TM. 2003. Phylogeography of Ponto‐Caspian crustaceans: a benthic–planktonic comparison. Mol. Ecol . 12: 985–996. [CrossRef] [PubMed] [Google Scholar]
  • Cristescu ME, Hebert PD. 2005. The “Crustacean Seas” an evolutionary perspective on the Ponto Caspian peracarids. Can. J. Fish. Aquat. Sci . 505–517. [Google Scholar]
  • Drummond AJ, Ho SY, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol . 4. [Google Scholar]
  • Fišer C, Robinson CT, Malard F. 2018. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol . 27: 613–635. [CrossRef] [PubMed] [Google Scholar]
  • Galil BS, Nehring S, Panov V. 2008. Waterways as invasion highways-impact of climate change and globalization. Biol. Invasions 193: 59–74. [Google Scholar]
  • Grabner DS, Weigand AM, Leese F, Winking C, Hering D, Tollrian R, Sures B. 2015. Invaders, natives and their enemies: distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasit. Vectors 8: 419. [Google Scholar]
  • Grabowski M, Bacela K, Konopacka A. 2007. How to be an invasive gammarid (Amphipoda: Gammaroidea)–comparison of life history traits. Hydrobiologia 590: 75–84. [Google Scholar]
  • Grabowski M, Mamos T, Bącela-Spychalska K, Rewicz T, Wattier RA. 2017. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5: e3016. [CrossRef] [PubMed] [Google Scholar]
  • Hänfling B, Edwards F, Gherardi F. 2011. Invasive alien Crustacea: dispersal, establishment, impact and control. BioControl 56: 573–595. [CrossRef] [Google Scholar]
  • Hou Z, Sket B, Fišer C, Li S. 2011. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proc. Natl. Acad. Sci . 108: 14533–14538. [CrossRef] [Google Scholar]
  • Hou Z, Sket B, Li S. 2014. Phylogenetic analyses of Gammaridae crustacean reveal different diversification patterns among sister lineages in the Tethyan region. Cladistics 30: 352–365. [Google Scholar]
  • Hulme PE. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46: 10–18. [Google Scholar]
  • Jones G. 2017. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J. Math. Biol . 74: 447–467. [CrossRef] [PubMed] [Google Scholar]
  • Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol . 30: 772–780. [CrossRef] [PubMed] [Google Scholar]
  • Kley A, Maier G. 2006. Reproductive characteristics of invasive gammarids in the Rhine-Main-Danube catchment, South Germany. Limnologica 36: 79–90. [Google Scholar]
  • Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol . 33: 1870–1874. [CrossRef] [PubMed] [Google Scholar]
  • Lanfear R, Calcott B, Ho SY, Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol . 29: 1695–1701. [CrossRef] [PubMed] [Google Scholar]
  • Leigh JW, Bryant D. 2015. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol . 6: 1110–1116. [Google Scholar]
  • Macdonald Iii KS, Yampolsky L, Duffy JE. 2005. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Mol. Phylogenet. Evol . 35: 323–343. [Google Scholar]
  • Mamos T, Wattier R, Majda A, Sket B, Grabowski M. 2014. Morphological vs. molecular delineation of taxa across montane regions in Europe: the case study of Gammarus balcanicus Schäferna, (Crustacea: A mphipoda). J. Zool. Syst. Evol. Res . 52: 237–248. [Google Scholar]
  • Mamos T, Wattier R, Burzyński A, Grabowski M. 2016. The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol . 25: 795–810. [CrossRef] [PubMed] [Google Scholar]
  • Mats V, Shcherbakov DY, Efimova I. 2011. Late Cretaceous-Cenozoic history of the Lake Baikal depression and formation of its unique biodiversity. Stratigr. Geol. Correl . 19: 404. [Google Scholar]
  • Médoc V, Albert H, Spataro T. 2015. Functional response comparisons among freshwater amphipods: ratio-dependence and higher predation for Gammarus pulex compared to the non-natives Dikerogammarus villosus and Echinogammarus berilloni. Biol. Invasions 17: 3625–3637. [Google Scholar]
  • Nahavandi N, Ketmaier V, Plath M, Tiedemann R. 2013. Diversification of Ponto-Caspian aquatic fauna: Morphology and molecules retrieve congruent evolutionary relationships in Pontogammarus maeoticus (Amphipoda: Pontogammaridae). Mol. Phylogenet. Evol . 69: 1063–1076. [Google Scholar]
  • Pinkster S. 1973. The Echinogammarus berilloni-group, a number of predominantly Iberian amphipod species (Crustacea). Bijdr. Dierkd . 43: 1–38. [CrossRef] [Google Scholar]
  • Pinkster S. 1993. A revision of the genus Echinogammarus Stebbing, 1899, with some notes on related genera (Crustacea, Amphipoda). Memorie del Museo Civ. Stor. nat.(IIa ser.) . [Google Scholar]
  • Piscart C, Manach A, Copp GH, Marmonier P. 2007. Distribution and microhabitats of native and non‐native gammarids (Amphipoda, Crustacea) in Brittany, with particular reference to the endangered endemic sub‐species Gammarus duebeni celticus. J. Biogeogr . 34: 524–533. [Google Scholar]
  • Piscart C, Kefford BJ, Beisel J-N. 2011a. Are salinity tolerances of non-native macroinvertebrates in France an indicator of potential for their translocation in a new area? Limnologica 41: 107–112. [Google Scholar]
  • Piscart C, Roussel JM, Dick JT, Grosbois G, Marmonier P. 2011b. Effects of coexistence on habitat use and trophic ecology of interacting native and invasive amphipods. Freshw. Biol . 56: 325–334. [Google Scholar]
  • Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol . 55: 595–609. [Google Scholar]
  • Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kovac M. 2004. Lithological-paleogeographic maps of Paratethys-10 maps late Eocene to pliocene. Courier Forschungsinstitut Senckenberg 250: 1–46. [Google Scholar]
  • Puillandre N, Lambert A, Brouillet S, Achaz G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol . 21: 1864–1877. [CrossRef] [PubMed] [Google Scholar]
  • Rachalewski M, Banha F, Grabowski M, Anastácio PM. 2013. Ectozoochory as a possible vector enhancing the spread of an alien amphipod Crangonyx pseudogracilis. Hydrobiologia 717: 109–117. [Google Scholar]
  • Rahel FJ, Olden JD. 2008. Assessing the effects of climate change on aquatic invasive species. Conservation biology 22: 521–533. [CrossRef] [PubMed] [Google Scholar]
  • Ratnasingham S, Hebert PD. 2007. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. notes 7: 355–364. [CrossRef] [PubMed] [Google Scholar]
  • Rewicz T, Wattier R, Grabowski M, Rigaud T, Bącela-Spychalska K. 2015. Out of the Black Sea: phylogeography of the invasive killer shrimp Dikerogammarus villosus across Europe. PLoS one 10. [Google Scholar]
  • Schmidt-Drewello A, Riss HW, Scharsack JP, Meyer EI. 2016. Relative benefit of the invasive Echinogammarus berilloni (Catta, 1878) over native gammarids under fish predation (Gasterosteus aculeatus Linnaeus, 1758). Aquat. Ecol . 50: 75–85. [Google Scholar]
  • Shatilina ZM, Riss HW, Protopopova MV, Trippe M, Meyer EI, Pavlichenko VV, Bedulina DS, Axenov-Gribanov DV, Timofeyev MA. 2011. The role of the heat shock proteins (HSP70 and sHSP) in the thermotolerance of freshwater amphipods from contrasting habitats. J. Therm. Biol . 36: 142–149. [Google Scholar]
  • Sherbakov DY. 1999. On the phylogeny of Lake Baikal amphipods in the light of mitochondrial and nuclear DNA sequence data. Crustaceana 72: 911–919. [Google Scholar]
  • Sket B, Hou Z. 2018. Family Gammaridae (Crustacea: Amphipoda), mainly its Echinogammarus clade in SW Europe. Further elucidation of its phylogeny and taxonomy. Acta Biol. Slov . 61: 93–102. [Google Scholar]
  • Solagaistua L, Elosegi A, Larrañaga A. 2019. Consumption and performance responses of the amphipod Echinogammarus berilloni change during laboratory incubation. Ann. Limnol. Int. J. Limnol. 25. [CrossRef] [Google Scholar]
  • Wattier R, Mamos T, Copilaş-Ciocianu D, Jelić M, Ollivier A, Chaumot A, Danger M, Felten V, Piscart C, Žganec K. 2020. Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Sci. Rep . 10: 1–16. [CrossRef] [PubMed] [Google Scholar]
  • Wysocka A, Grabowski M, Sworobowicz L, Burzyński A, Kilikowska A, Kostoski G, Sell J. 2013. A tale of time and depth: intralacustrine radiation in endemic Gammarus species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc . 167: 345–359. [Google Scholar]
  • Wysocka A, Grabowski M, Sworobowicz L, Mamos T, Burzyński A, Sell J. 2014. Origin of the Lake Ohrid gammarid species flock: ancient local phylogenetic lineage diversification. J. Biogeogr . 41: 1758–1768. [Google Scholar]
  • Xia X. 2018. DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Mol. Biol. Evol . 35: 1550–1552. [CrossRef] [PubMed] [Google Scholar]
  • Xia X, Xie Z, Salemi M, Chen L, Wang Y. 2003. An index of substitution saturation and its application. Mol. Phylogenet. Evol . 26: 1–7. [Google Scholar]
  • Zhang J, Kapli P, Pavlidis P, Stamatakis A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876. [CrossRef] [PubMed] [Google Scholar]
  • Zink RM, Barrowclough GF. 2008. Mitochondrial DNA under siege in avian phylogeography. Mol. Ecol . 17: 2107–2121. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.