Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Article Number 27
Number of page(s) 9
Published online 21 May 2019
  • Bickers AN. 2003. Cost effective marine habitat mapping from small vessels using GIS, Sidescan Sonar and Video. In: Woodroffe CD, Furness RA, eds. Coastal GIS 2003: an integrated approach to Australian coastal issues. Wollongong. [Google Scholar]
  • BioSonics. 2019. Scientific Echosounders − Aquatic habitat echosounder. [Google Scholar]
  • Boswell KM, Wilson MP, Cowan Jr JH. 2008. A semiautomated approach to estimating fish size, abundance, and behavior from dual-frequency identification sonar (DIDSON) data. North Am J Fisheries Manage 28: 799–807. [CrossRef] [Google Scholar]
  • Boys CA, Robinson W, Baumgartner LJ, Rampano B, Lowry M. 2013. Influence of approach velocity and mesh size on the entrainment and contact of a lowland river fish assemblage at a screened irrigation pump. PloS One 8: e67026. [CrossRef] [PubMed] [Google Scholar]
  • Caraco NF, Cole JJ. 2002. Contrasting impacts of a native and alien macrophyte on dissolved oxygen in a large river. Ecol Appl 12: 1496–1509. [Google Scholar]
  • Choi J-Y, Jeong K-S, La G-H, Joo G-J. 2014. Effect of removal of free-floating macrophytes on zooplankton habitat in shallow wetland. Knowledge Manage Aquatic Ecosyst 11. [CrossRef] [Google Scholar]
  • Christia C, Papastergiadou E, Papatheodorou G, Geraga M, Papadakis E. 2014. Seasonal and spatial variations of water quality, substrate and aquatic macrophytes based on side scan sonar, in an eastern Mediterranean lagoon (Kaiafas, Ionian Sea). Environ Earth Sci 71: 3543–3558. [Google Scholar]
  • CMAP. 2018. Transforming high resolution satellite imagery of shallow bodies of water into detailed habitat maps. In: BioBase, ed. Minneapolis: CMAP BioBase. [Google Scholar]
  • Creese RG, Glasby TM, West G, Gallen C. 2009. Mapping the habitats of NSW estuaries. In: NSW II, ed. Fisheries Final Report Series. Port Stephens: Port Stephens Fisheries Institute. [Google Scholar]
  • Everitt JH, Yang C, Escobar DE, Webster CF, Lonard RI, Davis MR. 1999. Using remote sensing and spatial information technologies to detect and map two aquatic macrophytes. J Aquatic Plant Manage 37: 71–80. [Google Scholar]
  • Genkai-Kato M, Carpenter SR. 2005. Eutrophication due to phosphorus recycling in relation to lake morphometry, temperature, and macrophytes. Ecology 86: 210–219. [Google Scholar]
  • Havens KE, Harwell MC, Brady MA, Sharfstein B, East TL, Rodusky AJ, Anson D, Maki RP. 2002. Large-scale mapping and predictive modeling of submerged aquatic vegetation in a shallow eutrophic lake. Sci World J 2: 949–965. [CrossRef] [Google Scholar]
  • Holmes JA, Cronkite GM, Enzenhofer HJ, Mulligan TJ. 2006. Accuracy and precision of fish-count data from a “dual-frequency identification sonar” (DIDSON) imaging system. ICES J Marine Sci 63: 543–555. [CrossRef] [Google Scholar]
  • Johnson JA, Newman RM. 2011. A comparison of two methods for sampling biomass of aquatic plants. J Aquatic Plant Manage 49: 1–8. [Google Scholar]
  • Kaeser AJ, Litts TL. 2010. A novel technique for mapping habitat in navigable streams using low-cost side scan sonar. Fisheries 35: 163–174. [CrossRef] [Google Scholar]
  • Kaeser AJ, Litts TL. 2013. An illustrated guide to low-cost, side scan sonar habitat mapping. Panama City: United States Fish and Wildlife Service. [Google Scholar]
  • Kaeser AJ, Litts TL, Tracy TW. 2013. Using low-cost side-scan sonar for benthic mapping throughout the lower Flint River, Georgia, USA. River Res Appl 29: 634–644. [Google Scholar]
  • Kelly DJ, Hawes I. 2005. Effects of invasive macrophytes on littoral-zone productivity and foodweb dynamics in a New Zealand high-country lake. J North Am Benthol Soc 24: 300–320. [CrossRef] [Google Scholar]
  • Kruss A, Tegowski J, Blondel P. 2009. Estimation of macrophytes using single and multibeam echo sounders and sidescan sonar in Arctic fjords (Hornsund and Kongsfjord, West Svalbard). Proceedings of 3rd International Conference and Exhibition on Underwater Acoustic Measurements: Technologies & Results. [Google Scholar]
  • Lacoul P, Freedman B. 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14: 89–136. [Google Scholar]
  • Langkau M. 2018. Echoes in motion: an acoustic camera (DIDSON) as a monitoring tool in applied freshwater ecology. University of Cologne, Cologne: Faculty of Mathematics and Natural Sciences. [Google Scholar]
  • Madsen JD. 1999. Point intercept and line intercept methods for aquatic plant management. Vicksburg MS: Army Engineer Waterways Experiment Station. [CrossRef] [Google Scholar]
  • Mizuno K, Asada A. 2014. Three dimensional mapping of aquatic plants at shallow lakes using 1.8 MHz high-resolution acoustic imaging sonar and image processing technology. Ultrasonics Symposium (IUS), 2014 IEEE International. IEEE, 1384–1387. [CrossRef] [Google Scholar]
  • Mizuno K, Asada A, Ban S, Uehara Y, Ishida T, Okuda N. 2018. Validation of a high-resolution acoustic imaging sonar method by estimating the biomass of submerged plants in shallow water. Ecol Inform 46: 179–184. [Google Scholar]
  • Mizuno K, Xu C, Asada A, Abukawa K, Yamamuro M. 2013. Species classification of submerged aquatic plants using acoustic images in shallow lakes. Underwater Technology Symposium (UT), 2013 IEEE International. IEEE, 1–5. [Google Scholar]
  • Moursund RA, Carlson TJ, Peters RD. 2003. A fisheries application of a dual-frequency identification sonar acoustic camera. ICES J Marine Sci 60: 678–683. [CrossRef] [Google Scholar]
  • Netherland MD, Jones KD. 2015. A three-year evaluation of triclopyr for selective whole-bay management of Eurasian watermilfoil on Lake Minnetonka, Minnesota. Lake Reservoir Manage 31: 306–323. [CrossRef] [Google Scholar]
  • Radomski P, Holbrook B. 2015. A comparison of two hydroacoustic methods for estimating submerged macrophyte distribution and abundance: a cautionary note. J Aquatic Plant Manage 53: 151–159. [Google Scholar]
  • Sabol BM, Melton RE, Chamberlain R, Doering P, Haunert K. 2002. Evaluation of a digital echo sounder system for detection of submersed aquatic vegetation. Estuaries 25: 133–141. [CrossRef] [Google Scholar]
  • Sainty GR, Jacobs SW. 2003. Waterplants in Australia. Potts Point, NSW: Sainty and Associates Pty Ltd. [Google Scholar]
  • Skogerboe JG, Poovey AG, Getsinger KD, Crowell W, Macbeth E. 2008. Earlyseason, low-dose applications of endothall to selectively control curlyleaf pondweed in Minnesota lakes. US Army Engineer Research and Development Center. 2019. Vicksburg (MS): APCRP Technical Notes Collection. [Google Scholar]
  • SoundMetrics. 2008. Dual-frequency identification sonar DIDSON − Operation Handbook. Bellevue WA: Sound Metrics Corporation. [Google Scholar]
  • Szoszkiewicz K, Ciecierska H, Kolada A, Schneider SC, Szwabińska M, Ruszczyńska J. 2014. Parameters structuring macrophyte communities in rivers and lakes − results from a case study in North-Central Poland. Knowledge Manage Aquatic Ecosyst 08. [Google Scholar]
  • Valley RD, Johnson MB, Dustin DL, Jones KD, Lauenstein MR, Nawrocki JJ. 2015. Combining hydroacoustic and point-intercept survey methods to assess aquatic plant species abundance patterns and community dominance. J Aquatic Plant Manage 53: 121–129. [Google Scholar]
  • Xu C, Mizuno K, Asada A, Abukawa K, Yamamuro M. 2013. 3D-view generation and species classification of aquatic plants using acoustic images. J Marine Acoustics Soc Jpn 40: 14–26. [CrossRef] [Google Scholar]
  • Yu J, Zhen W, Guan B, Zhong P, Jeppesen E, Liu Z. 2016. Dominance of Myriophyllum spicatum in submerged macrophyte communities associated with grass carp. Knowledge Manage Aquatic Ecosyst 24. [Google Scholar]
  • Zhang C, Boyle KJ. 2010. The effect of an aquatic invasive species (Eurasian watermilfoil) on lakefront property values. Ecol Econom 70: 394–404. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.