Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Article Number 8
Number of page(s) 24
DOI https://doi.org/10.1051/kmae/2019001
Published online 14 February 2019
  • Allan MG, Hamilton DP, Trolle D, Muraoka K, McBride C. 2016. Spatial heterogeneity in geothermally-influenced lakes derived from atmospherically corrected Landsat thermal imagery and three-dimensional hydrodynamic modelling. Int J Appl Earth Obs 50: 106–116. [CrossRef] [Google Scholar]
  • Barton K. 2018. MuMIn: Multi-Model Inference. R package version 1.42.1. [Google Scholar]
  • Bernhardt J, Engelhardt C, Kirillin G, Matschullat J. 2012. Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts. Clim Change 112: 791–817. [Google Scholar]
  • Boehrer B, Schultze M. 2008. Stratification of lakes. Rev Geophys 46: L16405. [Google Scholar]
  • Bouchez C. 2010. Modélisation des températures de surface et de fond des plans d'eau. École de Mines de Paris & École Nationale du Génie Rural des Eaux et des Forêts, Université Pierre et Marie Curie, 49. [Google Scholar]
  • Bruce LC, Frassl MA, Arhonditsis GB, Gal G, Hamilton DP, Hanson PC, Hetherington AL, Melack JM, Read JS, Rinke K, Rigosi A, Trolle D, Winslow L, Adrian R, Ayala AI, Bocaniov SA, Boehrer B, Boon C, Brookes JD, Bueche T, Busch BD, Copetti D, Cortés A, de Eyto E, Elliott JA, Gallina N, Gilboa Y, Guyennon N, Huang L, Kerimoglu O, Lenters JD, MacIntyre S, Makler-Pick V, McBride CG, Moreira S, Özkundakci D, Pilotti M, Rueda FJ, Rusak JA, Samal NR, Schmid M, Shatwell T, Snorthheim C, Soulignac F, Valerio G, van der Linden L, Vetter M, Vinçon-Leite B, Wang J, Weber M, Wickramaratne C, Woolway RI, Yao H, Hipsey MR. 2018. A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory network. Environ Modell Softw 102: 274–291. [CrossRef] [Google Scholar]
  • Butcher J, Nover D, Johnson T, Clark C. 2015. Sensitivity of lake thermal and mixing dynamics to climate change. Clim Change 129: 295–305. [Google Scholar]
  • Byrd RH, Lu P, Nocedal J, Zhu C. 1995. A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16: 1190–1208. [Google Scholar]
  • Caissie D, El-Jabi N, Satish MG. 2001. Modelling of maximum daily water temperatures in a small stream using air temperatures. J Hydrol 251: 14–28. [CrossRef] [Google Scholar]
  • Camacho A, Trefaut Rodrigues M, Navas C. 2015. Extreme operative temperatures are better descriptors of the thermal environment than mean temperatures. J Therm Biol 49–50: 106–111. [CrossRef] [PubMed] [Google Scholar]
  • Conover WJ, Iman RL. 1979. On multiple-comparisons procedures. NM, USA: Los Alamos Scientific Lab., pp. 1–17. [Google Scholar]
  • Czernecki B, Ptak M. 2018. The impact of global warming on lake surface water temperature in Poland − the application of empirical-statistical downscaling, 1971–2100. J Limnol 77: 330–348. [Google Scholar]
  • Danis P-A, von Grafenstein U, Masson-Delmotte V, Planton S, Gerdeaux D, Moisselin JM. 2004. Vulnerability of two European lakes in response to future climatic changes. Geophys Res Lett 31: L21507. [Google Scholar]
  • Daufresne M, Boet P. 2007. Climate change impacts on structure and diversity of fish communities in rivers. Glob Change Biol 13: 2467–2478. [CrossRef] [Google Scholar]
  • Daufresne M, Lengfellner K, Sommer U. 2009. Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci 106: 12788–12793. [CrossRef] [PubMed] [Google Scholar]
  • Davies-Colley R, Franklin P, Wilcock B, Clearwater S, Hickey C. 2013. National Objectives Framework − Temperature, dissolved oxygen & pH proposed thresholds for discussion. Hamilton, New Zealand: NIWA, 83 pp. [Google Scholar]
  • Delebecque A. 1898. Les lacs français. Paris, France: Typographie Chamerot et Renouard, 436 pp. [Google Scholar]
  • Dodson R, Marks D. 1997. Daily air temperature interpolated at high spatial resolution over a large mountainous region. Clim Res 8: 1–20. [Google Scholar]
  • Donlon CJ, Minnett PJ, Gentemann C, Nightingale TJ, Barton IJ, Ward B, Murray MJ. 2002. Toward improved validation of satellite sea surface skin temperature measurements for climate research. J Clim 15: 353–369. [Google Scholar]
  • Dörnhöfer K, Oppelt N. 2016. Remote sensing for lake research and monitoring − Recent advances. Ecol Indic 64: 105–122. [Google Scholar]
  • Falconer IR. 1999. An overview of problems caused by toxic blue-green algae (cyanobacteria) in drinking and recreational water. Environ Toxicol 14: 5–12. [Google Scholar]
  • Fang X, Alam SR, Stefan HG, Jiang L, Jacobson PC, Pereira DL. 2012. Simulations of water quality and oxythermal cisco habitat in Minnesota lakes under past and future climate scenarios. Water Qual Res J Can 47: 375–388. [CrossRef] [Google Scholar]
  • Fang X, Stefan HG. 2009. Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous United States under past and future climate scenarios. Limnol Oceanogr 54: 2359–2370. [Google Scholar]
  • Foley B, Jones ID, Maberly SC, Rippey B. 2012. Long‐term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshwater Biol 57: 278–289. [CrossRef] [Google Scholar]
  • Gao L, Bernhardt M, Schulz K. 2012. Elevation correction of ERA-Interim temperature data in complex terrain. Hydrol Earth Syst Sci 16: 4661–4673. [Google Scholar]
  • Gorham E, Boyce FM. 1989. Influence of lake surface area and depth upon thermal stratification and the depth of the summer thermocline. J Great Lakes Res 15: 233–245. [Google Scholar]
  • Goward S, Arvidson T, Williams D, Faundeen J, Irons J, Franks S. 2006. Historical record of Landsat global coverage. Photogramm Eng Remote Sensing 72: 1155–1169. [Google Scholar]
  • Green JD, Viner AB, Lowe DJ. 1987. The effect of climate on lake mixing patterns and temperatures. In: Viner AB, ed. Inland Waters of New Zealand. Wellington: New Zealand Department of Scientific and Industrial Research, pp. 65–95. [Google Scholar]
  • Håkanson L. 1996. A new, simple, general technique to predict seasonal variability of river discharge and lake temperature for lake ecosystem models. Ecol Model 88: 157–181. [CrossRef] [Google Scholar]
  • Håkanson L, Boulion VV. 2001. A practical approach to predict the duration of the growing season for European lakes. Ecol Model 140: 235–245. [CrossRef] [Google Scholar]
  • Han B-P, Armengol J, Garcia JC, Comerma M, Roura M, Dolz J, Straskraba M. 2000. The thermal structure of Sau Reservoir (NE: Spain): a simulation approach. Ecol Model 125: 109–122. [CrossRef] [Google Scholar]
  • Handcock RN, Torgersen CE, Cherkauer KA, Gillespie AR, Tockner K, Faux RN, Tan J. 2012. Thermal infrared remote sensing of water temperature in riverine landscapes. In: Carbonneau PE, Piégay H, eds. Fluvial Remote Sensing for Science and Management. NJ: Wiley, pp. 85–113. [CrossRef] [Google Scholar]
  • Heiskanen JJ, Mammarella I, Ojala A, Stepanenko V, Erkkilä K-M, Miettinen H, Sandström H, Eugster W, Leppäranta M, Järvinen H, Vesala T, Nordbo A. 2015. Effects of water clarity on lake stratification and lake-atmosphere heat exchange. J Geophys Res Atmos 120: 7412–7428. [Google Scholar]
  • Henderson-Sellers B. 1988. Sensitivity of thermal stratification models to changing boundary conditions. Appl Math Model 12: 31–43. [Google Scholar]
  • Hesselschwerdt J, Wantzen KM. 2018. Global warming may lower thermal barriers against invasive species in freshwater ecosystems − A study from Lake Constance. Sci Total Environ 645: 44–50. [PubMed] [Google Scholar]
  • Hostetler SW. 1995. Hydrological and thermal response of lakes to climate: description and modeling. In: Lerman A, Imboden DM, Gat JR, eds. Physics and Chemistry of Lakes. Berlin, Heidelberg: Springer, pp. 63–82. [CrossRef] [Google Scholar]
  • Huang Y, Liu H, Hinkel K, Yu B, Beck R, Wu J. 2017. Analysis of thermal structure of arctic lakes at local and regional scales using in situ and multidate Landsat‐8 data. Water Resour Res 53: 9642–9658. [Google Scholar]
  • Ibelings BW, Backer LC, Kardinaal WEA, Chorus I. 2014. Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae 40: 63–74. [Google Scholar]
  • Imberger J, Patterson JC. 1989. Physical limnology. Adv Appl Mech 27: 303–475. [CrossRef] [Google Scholar]
  • Janssen ABG, Arhonditsis GB, Beusen A, Bolding K, Bruce L, Bruggeman J, Couture RM, Downing AS, Alex Elliott J, Frassl MA, Gal G, Gerla DJ, Hipsey MR, Hu F, Ives SC, Janse JH, Jeppesen E, Jöhnk KD, Kneis D,Kong X, Kuiper JJ, Lehmann MK, Lemmen C, Özkundakci D, Petzoldt T, Rinke K, Robson BJ, Sachse R, Schep SA, Schmid M, Scholten H, Teurlincx S, Trolle D, Troost TA, Van Dam AA, Van Gerven LPA, Weijerman M, Wells SA, Mooij WM. 2015. Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective. Aquat Ecol 49: 513–548. [Google Scholar]
  • Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM. 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob Change Biol 14: 495–512. [CrossRef] [Google Scholar]
  • Kawai Y, Wada A. 2007. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J Oceanogr 63: 721–744. [CrossRef] [Google Scholar]
  • Kettle H, Thompson R, Anderson NJ, Livingstone DM. 2004. Empirical modeling of summer lake surface temperatures in southwest Greenland. Limnol Oceanogr 49: 271–282. [Google Scholar]
  • Kirillin G, Shatwell T. 2016. Generalized scaling of seasonal thermal stratification in lakes. Earth-Sci Rev 161: 179–190. [CrossRef] [Google Scholar]
  • Kirillin G, Shatwell T, Kasprzak P. 2013. Consequences of thermal pollution from a nuclear plant on lake temperature and mixing regime. J Hydrol 496: 47–56. [CrossRef] [Google Scholar]
  • Kraemer BM, Anneville O, Chandra S, Dix M, Kuusisto E, Livingstone DM, Rimmer A, Schladow SG, Silow E, Sitoki LM, Tamatamah R, Vadeboncoeur Y, McIntyre PB. 2015. Morphometry and average temperature affect lake stratification responses to climate change. Geophys Res Lett 42: 4981–4988. [Google Scholar]
  • Kruskal WH, Wallis WA. 1952. Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47: 583–621. [Google Scholar]
  • Layden A, MacCallum SN, Merchant CJ. 2016. Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1). Geosci Model Dev 9: 2167–2189. [Google Scholar]
  • Layden A, Merchant C, MacCallum S. 2015. Global climatology of surface water temperatures of large lakes by remote sensing. Int J Climatol. 35: 4464–4479. [Google Scholar]
  • Le Moigne P, Colin J, Decharme B. 2016. Impact of lake surface temperatures simulated by the FLake scheme in the CNRM-CM5 climate model. Tellus A 68: 31274. [CrossRef] [Google Scholar]
  • Leeper TJ. 2018. tabulizer: Bindings for Tabula PDF Table Extractor Library, R package version 0.2. 2. [Google Scholar]
  • Ling F, Foody G, Du H, Ban X, Li X, Zhang Y, Du Y. 2017. Monitoring thermal pollution in rivers downstream of dams with Landsat ETM+ thermal infrared images. Remote Sens (Basel) 9: 1175. [Google Scholar]
  • Livingstone DM, Lotter AF. 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with pal\sgmaelig;olimnological implications. J Paleolimnol 19: 181–198. [Google Scholar]
  • Livingstone DM, Lotter AF, Kettle H. 2005. Altitude-dependent differences in the primary physical response of mountain lakes to climatic forcing. Limnol Oceanogr 50: 1313–1325. [Google Scholar]
  • Livingstone DM, Lotter AF, Walkery IR. 1999. The decrease in summer surface water temperature with altitude in Swiss Alpine Lakes: a comparison with air temperature lapse rates. Arct Antarct Alp Res 31: 341–352. [Google Scholar]
  • MacKay MD, Neale PJ, Arp CD, Domis LNDS, Fang X, Gal G, Jöhnk KD, Kirillin G, Lenters JD, Litchman E, MacIntyre S, Marsh P, Melack J, Mooij WM, Peeters F, Quesada A, Schladow SG, Schmid M, Spence C, Stokesr SL. 2009. Modeling lakes and reservoirs in the climate system. Limnol Oceanogr 54: 2315–2329. [Google Scholar]
  • Martí-Cardona B, Arbat-Bofill M, Prats-Rodríguez J, Pipia L. 2016. Thermal remote sensing for reservoir modelling and management. In: Ouwehand L, ed. Living Planet Symposium 2016. Prague, Czech Republic: ESA Communications, 4 pp. [Google Scholar]
  • Marti-Cardona B, Steissberg TE, Schladow SG, Hook SJ. 2008. Relating fish kills to upwellings and wind patterns in the Salton Sea. Hydrobiologia 604: 85–95. [Google Scholar]
  • McCollum AB, Bunnell DB, Stein RA. 2003. Cold, northern winters: the importance of temperature to overwinter mortality of age-0 white crappies. Trans Am Fish Soc 132: 977–987. [Google Scholar]
  • McCombie AM. 1959. Some relations between air temperatures and the surface water temperatures of lakes. Limnol Oceanogr 4: 252–258. [Google Scholar]
  • McKinney W. 2010. Data structures for statistical computing in python, in 9th Python in Science Conference (SciPy 2010), Austin, Texas, pp. 51–56. [Google Scholar]
  • Mironov DV. 2008. Parameterization of lakes in numerical weather prediction. Description of a lake model. In: Milelli M, ed. COSMO Technical Reports, Offenbach am Main. [Google Scholar]
  • Mokhov II, Akperov MG. 2006. Tropospheric lapse rate and its relation to surface temperature from reanalysis data. Izv Atmos Ocean Phys 42: 430–438. [CrossRef] [Google Scholar]
  • Mooij W, Trolle D, Jeppesen E, Arhonditsis G, Belolipetsky PV, Chitamwebwa DBR, Degermendzhy AG, DeAngelis DL, De Senerpont Domis LN, Downing AS, Elliott JA, Fragoso CR Jr, Gaedke U, Genova SN, Gulati RD, Håkanson L, Hamilton DP, Hipsey MR, ‘t Hoen J, Hülsmann S, Los FH, Makler-Pick V, Petzoldt T, Prokopkin IG, Rinke K, Schep SA, Tominaga K, Van Dam AA, Van Nes EH, Wells SA, Janse JH. 2010. Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquat Ecol 44: 633–667. [Google Scholar]
  • O’Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, Schneider P, Lenters JD, McIntyre PB, Kraemer BM, Weyhenmeyer GA, Straile D, Dong B, Adrian R, Allan MG, Anneville O, Arvola L, Austin J, Bailey JL, Baron JS, Brookes JD, de Eyto E, Dokulil MT, Hamilton DP, Havens K, Hetherington AL, Higgins SN, Hook S, Izmest’eva LR, Joehnk KD, Kangur K, Kasprzak P, Kumagai M, Kuusisto E, Leshkevich G, Livingstone DM, MacIntyre S, May L, Melack JM, Mueller-Navarra DC, Naumenko M, Noges P, Noges T, North RP, Plisnier P-D, Rigosi A, Rimmer A, Rogora M, Rudstam LG, Rusak JA, Salmaso N, Samal NR, Schindler DE, Schladow SG, Schmid M, Schmidt SR, Silow E, Soylu ME, Teubner K, Verburg P, Voutilainen A, Watkinson A, Williamson CE, Zhang G. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett 42: 10773–10781. [Google Scholar]
  • Ottosson F, Abrahamsson O. 1998. Presentation and analysis of a model simulating epilimnetic and hypolimnetic temperatures in lakes. Ecol Model 110: 233–253. [CrossRef] [Google Scholar]
  • Paerl HW, Huisman J. 2008. Blooms like it hot. Science 320: 57–58. [Google Scholar]
  • Piccolroaz S. 2016. Prediction of lake surface temperature using the air2water model: guidelines, challenges, and future perspectives. Adv Oceanogr Limnol 7: 36–50. [CrossRef] [Google Scholar]
  • Piccolroaz S, Healey NC, Lenters JD, Schladow SG, Hook SJ, Sahoo GB, Toffolon M. 2018. On the predictability of lake surface temperature using air temperature in a changing climate: A case study for Lake Tahoe (U.S.A.). Limnol Oceanogr 63: 243–261. [Google Scholar]
  • Piccolroaz S, Toffolon M, Majone B. 2013. A simple lumped model to convert air temperature into surface water temperature in lakes. Hydrol Earth Syst Sci 17: 3323–3338. [Google Scholar]
  • Piccolroaz S, Toffolon M, Majone B. 2015. The role of stratification on lakes' thermal response: The case of Lake Superior. Water Resour Res 51: 7878–7894. [Google Scholar]
  • Pizarro J, Vergara PM, Cerda S, Briones D. 2016. Cooling and eutrophication of southern Chilean lakes. Sci Total Environ 541: 683–691. [PubMed] [Google Scholar]
  • Pohlert T. 2018. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended, R package version 1.3.0. [Google Scholar]
  • Prats J, Danis P-A. 2015. Optimisation du réseau national de suivi pérenne in situ de la température des plans d'eau : apport de la modélisation et des données satellitaires, Rapport Final. Aix-en-Provence: Onema, 94 pp. [Google Scholar]
  • Prats J, Reynaud N, Rebière D, Peroux T, Tormos T, Danis PA. 2018a. LakeSST: Lake skin surface temperature in French inland water bodies for 1999-2016 from Landsat archives. Earth Syst Sci Data 10: 727–743. [Google Scholar]
  • Prats J, Salençon M-J, Gant M, Danis P-A. 2018b. Simulation of the hydrodynamic behaviour of a Mediterranean reservoir under different climate change and management scenarios. J Limnol 77: 62–81. [Google Scholar]
  • Quintana-Seguí P, Le Moigne P, Durand Y, Martin E, Habets F, Baillon M, Canellas C, Franchisteguy L, Morel S. 2008. Analysis of near-surface atmospheric variables: validation of the SAFRAN analysis over France. J Appl Meteorol 47: 92–107. [Google Scholar]
  • R Core Team. 2015. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. [Google Scholar]
  • Raftery AE. 1995. Bayesian model selection in social research. Sociol Methodol 25: 111–163. [Google Scholar]
  • Read JS, Winslow LA, Hansen GJA, Van Den Hoek J, Hanson PC, Bruce LC, Markfort CD. 2014. Simulating 2368 temperate lakes reveals weak coherence in stratification phenology. Ecol Model 291: 142–150. [CrossRef] [Google Scholar]
  • Riffler M, Lieberherr G, Wunderle S. 2015. Lake surface water temperatures of European Alpine lakes (1989–2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set. Earth Syst Sci Data 7: 1–17. [Google Scholar]
  • Rimmer A, Gal G, Opher T, Lechinsky Y, Yacobi YZ. 2011. Mechanisms of long-term variations in the thermal structure of a warm lake. Limnol Oceanogr 56: 974–988. [Google Scholar]
  • Robson BJ. 2014. When do aquatic systems models provide useful predictions, what is changing, and what is next? Environ Modell Softw 61: 287–296. [CrossRef] [Google Scholar]
  • Rolland C. 2003. Spatial and seasonal variations of air temperature lapse rates in Alpine regions. J Clim 16: 1032–1046. [Google Scholar]
  • Roubeix V, Danis P-A. 2016. Relations entre paramètres physico-chimiques des plans d'eau et accupation du bassin versant. Estimation des Conditions de Référence. Aix-en-Provence: Onema, 26 pp. [Google Scholar]
  • Roubeix V, Daufresne M, Argillier C, Dublon J, Maire A, Nicolas D, Raymond J-C, Danis P-A. 2017. Physico-chemical thresholds in the distribution of fish species among French lakes. Knowl Manag Aquat Ecosyst 41. [CrossRef] [Google Scholar]
  • Rueda F, Schladow G. 2009. Mixing and stratification in lakes of varying horizontal length scales: Scaling arguments and energy partitioning. Limnol Oceanogr 54: 2003–2017. [Google Scholar]
  • Sahoo GB, Forrest AL, Schladow SG, Reuter JE, Coats R, Dettinger M. 2015. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities. Limnol Oceanogr 61: 496–507. [Google Scholar]
  • Salençon M-J. 1997. Study of the thermal dynamics of two dammed lakes (Pareloup and Rochebut, France), using the EOLE model. Ecol Model 104: 15–38. [CrossRef] [Google Scholar]
  • Schaeffer BA, Iiames J, Dwyer J, Urquhart E, Salls W, Rover J, Seegers B. 2018. An initial validation of Landsat 5 and 7 derived surface water temperature for U.S. lakes, reservoirs, and estuaries. Int J Remote Sens 1–17. [Google Scholar]
  • Schluessel P, Emery WJ, Grassl H, Mammen T. 1990. On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature. J Geophys Res Oceans 95: 13341–13356. [Google Scholar]
  • Schmid M, Köster O. 2016. Excess warming of a Central European lake driven by solar brightening. Water Resour Res 52: 8103–8116. [Google Scholar]
  • Schmidt SR, Gerten D, Hintze T, Lischeid G, Livingstone DM, Adrian R. 2018. Temporal and spatial scales of water temperature variability as an indicator for mixing in a polymictic lake. Inland Waters 8: 82–95. [Google Scholar]
  • Schneider P, Hook SJ. 2010. Space observations of inland water bodies show rapid surface warming since 1985. Geophys Res Lett 37: L22405. [Google Scholar]
  • Schneider P, Hook SJ, Radocinski RG, Corlett GK, Hulley GC, Schladow SG, Steissberg TE. 2009. Satellite observations indicate rapid warming trend for lakes in California and Nevada. Geophys Res Lett 36: L22402. [Google Scholar]
  • Snucins E, Gunn J. 2000. Interannual variation in the thermal structure of clear and colored lakes. Limnol Oceanogr 45: 1639–1646. [Google Scholar]
  • Stefan HG, Hondzo M, Fang X, Eaton JG, McCormick JH. 1996. Simulated long term temperature and dissolved oxygen characteristics of lakes in the north‐central United States and associated fish habitat limits. Limnol Oceanogr 41: 1124–1135. [Google Scholar]
  • Straškraba M, Gnauck A. 1985. Freshwater Ecosystems: Modelling and Simulation. Amsterdam: Elsevier, 309 pp. [Google Scholar]
  • Subin ZM, Riley WJ, Mironov D. 2012. An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J Adv Model Earth Syst 4: M02001. [Google Scholar]
  • Toffolon M, Piccolroaz S, Majone B, Soja A-M, Peeters F, Schmid M, Wüest A. 2014. Prediction of surface temperature in lakes with different morphology using air temperature. Limnol Oceanogr 59: 2185–2202. [Google Scholar]
  • Tolnai M, Nagy JG, Bakó G. 2016. Spatiotemporal distribution of Landsat imagery of Europe using cloud cover-weighted metadata. J Maps 12: 1084–1088. [Google Scholar]
  • Touchart L. 2002. Limnologie physique et dynamique. Paris: L'Harmattan, 396 pp. [Google Scholar]
  • Trolle D, Hamilton DP, Pilditch CA, Duggan IC, Jeppesen E. 2011. Predicting the effects of climate change on trophic status of three morphologically varying lakes: Implications for lake restoration and management. Environ Modell Softw 26: 354–370. [CrossRef] [Google Scholar]
  • Valerio G, Pilotti M, Barontini S, Leoni B. 2015. Sensitivity of the multiannual thermal dynamics of a deep pre-alpine lake to climatic change. Hydrol Process 29: 767–779. [Google Scholar]
  • van der Walt S, Colbert SC, Varoquaux G. 2011. The NumPy Array: A structure for efficient numerical computation. Comput Sci Eng 13: 22–30. [Google Scholar]
  • Venables WN, Ripley BD. 2002. Modern applied statistics with S, 4th ed. New York: Springer. [Google Scholar]
  • Vidal J-P, Martin E, Franchistéguy L, Baillon M, Soubeyroux J-M. 2010. A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int J Climatol 30: 1627–1644. [Google Scholar]
  • Vyverman W, Sabbe K. 1995. Diatom-temperature transfer functions based on the altitudinal zonation of diatom assemblages in Papua New Guinea: a possible tool in the reconstruction of regional palaeoclimatic changes. J Paleolimnol 13: 65–77. [Google Scholar]
  • Wan W, Li H, Xie H, Hong Y, Long D, Zhao L, Han Z, Cui Y, Liu B, Wang C, Yang W. 2017. A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001–2015. Sci Data 4: 170095. [Google Scholar]
  • Webb BW, Hannah DM, Moore RD, Brown LE, Nobilis F. 2008. Recent advances in stream and river temperature research. Hydrol Process 22: 902–918. [Google Scholar]
  • Wickham H. 2017. tidyverse: Easily Install and Load the ‘Tidyverse’, R package version 1.2.1. [Google Scholar]
  • Wilcoxon F. 1945. Individual comparisons by ranking methods. Biometrics Bull 1: 80–83. [CrossRef] [Google Scholar]
  • Wilson RC, Hook SJ, Schneider P, Schladow SG. 2013. Skin and bulk temperature difference at Lake Tahoe: A case study on lake skin effect. J Geophys Res Atmos 118: 10332–310346. [Google Scholar]
  • Woolway RI, Dokulil MT, Marszelewski W, Schmid M, Bouffard D, Merchant CJ. 2017. Warming of Central European lakes and their response to the 1980s climate regime shift. Clim Change 142: 505–520. [Google Scholar]
  • Woolway RI, Maberly SC, Jones ID, Feuchtmayr H. 2014. A novel method for estimating the onset of thermal stratification in lakes from surface water measurements. Water Resour Res 50: 5131–5140. [Google Scholar]
  • Woolway RI, Merchant CJ. 2017. Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability. Sci Rep 7: 4130. [Google Scholar]
  • Woolway RI, Merchant CJ. 2018. Intralake heterogeneity of thermal responses to climate change: a study of large Northern Hemisphere lakes. J Geophys Res Atmos 123: 3087–3098. [Google Scholar]
  • Wulder MA, White JC, Loveland TR, Woodcock CE, Belward AS, Cohen WB, Fosnight EA, Shaw J, Masek JG, Roy DP. 2016. The global Landsat archive: Status, consolidation, and direction. Remote Sens Environ 185: 271–283. [Google Scholar]
  • Xiao C, Li P, Feng Z, Wu X. 2018. Spatio-temporal differences in cloud cover of Landsat-8 OLI observations across China during 2013–2016. J Geogr Sci 28: 429–444. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.