Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Article Number 12
Number of page(s) 6
DOI https://doi.org/10.1051/kmae/2018046
Published online 21 February 2019
  • APHA (American Public Health Association). 1992. Standard Methods: For Examination of Water and Wastewater, 18th ed. Washington DC: American Public Health Association. [Google Scholar]
  • Arts GHP. 2002. Deterioration of Atlantic soft water macrophyte communities by acidification, eutrophication and alkalinisation. Aquat Bot 73: 373–393. [Google Scholar]
  • Barko JW, James WF. 1998. Effects of submerged aquatic macro phytes on nutrient dynamics, sedimentation, and resuspension. In: Jeppesen E, Sondergaard M, Christofferson K, eds. The Structuring Role of Submerged Macrophytes in Lakes. New York: Springer, pp. 197–214. [Google Scholar]
  • Bassett J, Denney RC, Jeffery GH, Mendham J. 1978. Vogel's Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, 4th ed. London: Longman. [Google Scholar]
  • Brisson J, Chazarenc F. 2009. Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection. Sci Total Environ 407: 3923–3930. [PubMed] [Google Scholar]
  • Cao TE, Ni L, Xie P, Xu J, Zhang M. 2011. Effects of moderate ammonium enrichment on three submersed macrophytes under contrasting light availability. Freshw Biol 56: 1620–1629. [Google Scholar]
  • Chambers PA. 1987. Light and nutrients in the control of aquatic plant community structure. II. In situ observation. J Ecol 75: 621–628. [Google Scholar]
  • Chambers PA, Kalff J. 1987. Light and nutrients in the control of aquatic plant community structure. I. In situ experiments. J Ecol 75: 611–619. [Google Scholar]
  • Chambers PA, Prepas EE, Bothwell ML, Hamilton HR. 1989. Roots versus shoots in nutrient uptake by aquatic macrophytes in flowing waters. Can J Fish Aquat Sci 46: 435–439. [Google Scholar]
  • Chen J, Zhang X, Xi Y, Ni L, Jeppesen E. 2016. Differential photosynthetic and morphological adaptations to low light affect depth distribution of two submersed macrophytes in lakes. Sci Rep 6: 1–9. [Google Scholar]
  • Clesceri LS, Greenberg AE, Trussel RR. 1999. Standard Methods for the Examination of Water and Wastewater, 17th ed. Washington DC: American Public Health Association. [Google Scholar]
  • Cronin G, Lodge DM. 2003. Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes. Oecologia 137: 32–41. [CrossRef] [PubMed] [Google Scholar]
  • Denny P. 1972. Sites of nutrient absorption in aquatic macrophytes. J Ecol 60: 819–829. [Google Scholar]
  • Dülger E, Heidbüchel P, Schumann T, Mettler-Altmann T, Hussner A. 2017. Interactive effects of nitrate concentrations and carbon dioxide on the stoichiometry, biomass allocation and growth rate of submerged aquatic plants. Freshw Biol 62: 1094–1104. [Google Scholar]
  • Eugelink AH. 1998. Phosphorus uptake and active growth of Elodea canadensis Michx. and Elodea nuttallii (Planch.) St. John. Water Sci Technol 37: 59–65. [Google Scholar]
  • Garbey C, Murphy KJ, Thiébaut G, Muller S. 2004. Variation in P-content in aquatic plant tissues offers an efficient tool for determining plant growth strategies along a resource gradient. Freshw Biol 49: 346–356. [Google Scholar]
  • Grime JP, Crick JC, Rincon JE. 1986. The ecological significance of plasticity. Symp Soc Exp Biol 40: 5–29. [PubMed] [Google Scholar]
  • Husáková I, Weiner J, Münzbergová Z. 2018. Species traits and shoot-root biomass allocation in 20 dry-grassland species. J Plant Ecol 11: 273–285. [Google Scholar]
  • Idestam-Almquist J, Kautsky L. 1995. Plastic responses in morphology of Potamogeton pectinatus L. to sediment and above-sediment conditions at two sites in the northern Baltic proper. Aquat Bot 52: 205–216. [Google Scholar]
  • James WF, Best EP, Barko JW. 2004. Sediment resuspension and light attenuation in Peoria Lake: can macrophytes improve water quality in this shallow system. Hydrobiologia 515: 193–201. [Google Scholar]
  • Jeppesen E, Sondergaard Ma, Sondergaard Mo, Christoffersen K. 1998. The Structuring Role of Submerged Macrophytes in Lakes. Berlin: Springer. [Google Scholar]
  • Jespersen AM, Christoffersen K. 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Arch Hydrobiol 109: 445–454. [Google Scholar]
  • Jin XC. 2003. Analysis of eutrophication state and trend for lakes in China. J Limnol 62: 60–66. [Google Scholar]
  • Langeland KA. 1996. Hydrilla verticillata (L.f.) Royle (Hydrocharataceae), the perfect aquatic weed. Castanea 61: 293–304. [Google Scholar]
  • Madsen TV, Cedergreen N. 2002. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshw Biol 47: 283–291. [Google Scholar]
  • Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84. [Google Scholar]
  • Mantai KE, Newton ME. 1982. Root growth in Myriophyllum: a specific plant response to nutrient availability. Aquat Bot 13: 45–55. [Google Scholar]
  • Mei X, Zhang X. 2015. Effects of N and P additions to water column on growth of Vallisneria natans . J Aquat Plant Manage 53: 36–43. [Google Scholar]
  • O'Connell JL, Byrd KB, Kelly M. 2015. A hybrid model for mapping relative differences in belowground biomass and root: shoot ratios using spectral reflectance, foliar N and plant biophysical data within coastal marsh. Remote Sens 7: 16480–16503. [CrossRef] [Google Scholar]
  • Ozimek TE, Donk van, Gulati RD. 1993. Growth and nutrient uptake by two species of elodea, in experimental conditions and their role in nutrient accumulation in a macrophyte-dominated lake. Hydrobiologia 251: 13–18. [Google Scholar]
  • Paerl HW, Rudek J, Mallin MA. 1990. Stimulation of phytoplankton production in coastal waters by natural rainfall inputs: nutritional and trophic implications. Mar Biol 107: 247–254. [Google Scholar]
  • Portielje R, Roijackers RMM. 1995. Primary succession of aquatic macrophytes in experimental ditches in relation to nutrient input. Aquat Bot 50: 127–140. [Google Scholar]
  • Qiu DR, Wu ZB, Liu BY, Deng JQ, Fu GP, He F. 2001. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China. Ecol Eng 18: 147–156. [Google Scholar]
  • Robach F, Hajnsek I, Eglin I, Trémolières M. 1995. Phosphorus sources for aquatic macrophytes in running waters: water or sediment. Acta Bot Gallica 142: 719–731. [Google Scholar]
  • Song K, Adams CJ, Burgin AJ. 2017. Relative importance of external and internal phosphorus loadings on affecting lake water quality in agricultural landscapes. Ecol Eng 108: 482–488. [Google Scholar]
  • Sultana M, Asaeda T, Azim ME, Fujino T. 2010. Morphological plasticity of submerged macrophyte Potamogeton wrightii Morong under different photoperiods and nutrient conditions. Chem Ecol 26: 223–232. [CrossRef] [Google Scholar]
  • Van TK, Haller WT, Bowes G. 1976. Comparison of photosynthetic characteristics of 3 submersed aquatic plants. Plant Physiol 58: 761–768. [Google Scholar]
  • Xie Y, An S, Yao X, Xiao K, Zhang C. 2005. Short-time response in root morphology of Vallisneria natans to sediment type and water-column nutrient. Aquat Bot 81: 85–96. [Google Scholar]
  • Xie Y, An S, Wu B, Wang W. 2006. Density-dependent root morphology and root distribution in the submerged plant Vallisneria natan . Environ Exp Bot 57: 195–200. [Google Scholar]
  • Yu J, Liu Z, Li K, Chen F, Guan B, Hu Y, Zhong P, Tang Y, Zhao X, Zeng H, Jeppesen E. 2016. Restoration of shallow lakes in subtropical and tropical China: response of nutrients and water clarity to biomanipulation by fish removal and submerged plant transplantation. Water 2016: 438. [Google Scholar]
  • Zhang ZH, Rengel Z, Meney K. 2007. Growth and resource allocation of Canna indica and Schoenoplectus validus as affected by interspecific competition and nutrient availability. Hydrobiologia 589: 235–248. [Google Scholar]
  • Zhang X, Liu Z, Jeppesen E, Taylor W. 2014. Effects of deposit-feeding tubificid worms and filter-feeding bivalves on benthic-pelagic coupling: implications for the restoration of eutrophic shallow lakes. Water Res 50: 135–146. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.