Issue
Knowl. Manag. Aquat. Ecosyst.
Number 419, 2018
Topical Issue on Fish Ecology
Article Number 39
Number of page(s) 10
DOI https://doi.org/10.1051/kmae/2018027
Published online 28 September 2018
  • Andersson M, Degerman E, Persson J, Ragnarsson-Stabo H. 2015. Movements, recapture rate and length increment of tagged pikeperch (Sander lucioperca) − a basis for management in lakes. Fish Manag Ecol 22: 450–457. [CrossRef] [Google Scholar]
  • Arlinghaus R, Lorenzen K, Johnson BM, Cooke SJ, Cowx IG. 2016. Management of freshwater fisheries: addressing habitat, people and fish. In: Craig JF, ed. Freshwater Fisheries Ecology. Oxford: Wiley, pp. 557–579. [Google Scholar]
  • Árva D, Tóth M, Horváth H, Nagy SA, Specziár A. 2015. The relative importance of spatial and environmental processes in distribution of benthic chironomid larvae within a large and shallow lake. Hydrobiologia 742: 249–266. [CrossRef] [Google Scholar]
  • Balogh C, Muskó IB, G-Tóth L, Nagy L. 2008. Quantitative trends of zebra mussels in Lake Balaton (Hungary) in 2003–2005 at different water levels. Hydrobiologia 613: 57–69. [CrossRef] [Google Scholar]
  • Bíró P. 1970. Investigation of growth of pike-perch (Lucioperca lucioperca L.) in Lake Balaton. Ann Inst Biol (Tihany) 37: 145–164. [Google Scholar]
  • Bíró P. 1973. The food of pike-perch (Lucioperca lucioperca L.) in Lake Balaton. Ann Inst Biol (Tihany) 40: 159–183. [Google Scholar]
  • Bíró P. 1985. Dynamics of pike-perch, Stizostedion lucioperca L. in Lake Balaton. Int Rev Hydrobiol 70: 471–490. [Google Scholar]
  • Bolland JD, Cowx IG, Lucas MC. 2009. Dispersal and survival of stocked cyprinids in a small English river: comparison with wild fishes using a multi-method approach. J Fish Biol 74: 2313–2328. [CrossRef] [PubMed] [Google Scholar]
  • Campana SE. 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59: 197–242. [CrossRef] [Google Scholar]
  • Chezik KA, Lester NP, Venturelli PA. 2014. Fish growth and degree-days I: selecting a base temperature for a within-population study. Can J Aquat Sci 71: 47–55. [CrossRef] [Google Scholar]
  • Cloern JR, Nichols FH. 1978. A von Bertalanffy growth model with a seasonally varying coefficient. J Fish Res Bd Can 35: 1479–1482. [CrossRef] [Google Scholar]
  • Copp GH, Wesley KJ, Kováč V, Ives MJ, Carter MG. 2003. Introduction and establishment of the pikeperch Stizostedion lucioperca (L.) in Stanborough Lake (Hertforshire) and its dispersal in the Thames catchment. Lond Nat 82: 139–153. [Google Scholar]
  • Copp GH, Bianco PG, Bogutskaya NG, Erős T, Falka I, Ferreira MT, Fox MG, Freyhof J, Gozlan RE, Grabowska J, Kováč V, Moreno-Amich R, Naseka AM, Peňáz M, Povž M, Przybylski M, Robillard M, Russell IC, Stakėnas S, Šumer S, Vila-Gispert A, Wiesner C. 2005. To be, or not to be, a non-native freshwater fish? J Appl Ichthyol 21: 242–262. [CrossRef] [Google Scholar]
  • FAO (2005-2018). World inventory of fisheries. Stocking techniques for increased production. Issues Fact Sheets. In: FAO Fisheries and Aquaculture Department . Rome. Updated 27 May 2005. http://www.fao.org/fishery/ (Downloaded on 16 March 2018). [Google Scholar]
  • Fickling NJ, Lee RLG. 1983. A review of the ecological impact of the introduction of the zander (Stizostedion lucioperca L.) into waters of the Eurasian mainland. Fish Manag 14: 151–155. [Google Scholar]
  • Fielder DG. 1992. Evaluation of stocking walleye fry and fingerlings and factors affecting their success in lower Lake Oahe, South Dakota. N Am J Fish Manag 12: 336–345. [CrossRef] [Google Scholar]
  • Francis RICC. 1988a. Maximum likelihood estimation of growth and growth variability from tagging data. N Z J Mar Freshw Res 22: 42–51. [Google Scholar]
  • Francis RICC. 1988b. Are growth parameters estimated from tagging and age-length data are comparable? Can J Aquat Sci 45: 936–942. [CrossRef] [Google Scholar]
  • Freyhof J, Kottelat M. 2008. Cyprinus carpio. The IUCN Red List of Threatened Species 2008: e.T6181 A12559362. [Google Scholar]
  • Frisk M, Skov PV, Steffensen JF. 2012. Thermal optimum for pikeperch (Sander lucioperca) and the use of ventilation frequency as a predictor of metabolic rate. Aquaculture 324-325: 151–157. [CrossRef] [Google Scholar]
  • Goolish EM, Adelman IR. 1984. Effects of ration size and temperature on the growth of juvenile common carp (Cyprinus carpio L.). Aquaculture 36: 27–35. [CrossRef] [Google Scholar]
  • Gunn JM, McMurtry MJ, Bowlby JN, Casselman JM, Liimatainen VA. 1987. Survival and growth of stocked lake trout in relation to body size, stocking season, lake acidity, and biomass of competitors. Trans Am Fish Soc 116: 618–627. [CrossRef] [Google Scholar]
  • Harka Á. 1977. Growth of pike-perch (Lucioperca lucioperca L.) in the Tisza stretch at Tiszafüred. Tiscia (Szeged) 12: 109–115. [Google Scholar]
  • Hickley P, Chare S. 2004. Fisheries for non-native species in England and Wales: angling or the environment? Fish Manag Ecol 11: 203–212. [CrossRef] [EDP Sciences] [Google Scholar]
  • Istvánovics V, Clement A, Somlyódy L, Specziár A, G.−Tóth L, Padisák J. 2007. Updating water quality targets for shallow Lake Balaton (Hungary), recovering from eutrophication. Hydrobiologia 581: 305–318. [CrossRef] [Google Scholar]
  • Jones MJ, Stuart IG. 2007. Movements and habitat use of common carp (Cyprinus carpio) and Murray cod (Maccullochella peelii peelii) juveniles in a large lowland Australian river. Ecol Freshw Fish 16: 210–220. [CrossRef] [Google Scholar]
  • Kennedy GJA, Strange CD. 1986. The effects of intra- and inter-specific competition on the survival and growth of stocked juvenile Atlantic salmon, Salmo salar L., and resident trout, Salmo trutta L., in an upland stream. J Fish Biol 28: 479–489. [CrossRef] [Google Scholar]
  • Keskinen T, Marjomäki TJ. 2003. Growth of pikeperch in relation to lake characteristics: total phosphorus, water colour, lake area and depth. J Fish Biol 63: 1274–1282. [CrossRef] [Google Scholar]
  • Keskinen T, Pääkkönen JPJ, Lilja J, Marjomäki TJ, Karjalainen J. 2005. Homing behaviour of pikeperch (Sander lucioperca) following experimental transplantation. Boreal Env Res 10: 119–124. [Google Scholar]
  • Kjellman J, Lappalainen J, Urho L. (2001). Influence of temperature on size and abundance dynamics of age-0 perch and pikeperch. Fish Res 53: 47–56. [CrossRef] [Google Scholar]
  • Lappalainen J, Milardi M, Nyberg K, Venäläinen A. 2009. Effects of water temperature on year-class strengths and growth patterns of pikeperch (Sander lucioperca (L.)) in the brackish Baltic Sea. Aquat Ecol 43: 181–191. [CrossRef] [Google Scholar]
  • Lorenzen K. 2016. Toward a new paradigm for growth modelling in fisheries stock assessments: embracing plasticity and its consequences. Fish Res 180: 4–22. [CrossRef] [Google Scholar]
  • Michaletz PH, Wallendorf MJ, Nicks DM. 2008. Effects of stocking rate, stocking size and angler catch inequality on exploitation of stocked channel catfish in small Missouri impoundments. N Am J Fish Manag 28: 1486–1497. [CrossRef] [Google Scholar]
  • Miranda LE, Wingo WM, Muncy RJ, Bates TD. 1987. Bias in growth estimates derived from fish collected by anglers. In: Summerfelt RC, Hall GE, eds. Age and Growth of Fish. Ames: Iowa State University Press, pp. 211–220. [Google Scholar]
  • Mooij WM, Lammens EHRR, van Densen WLT. 1994. Growth rate of 0+ fish in relation to temperature, body size and food in shallow eutrophic Lake Tjeukemeer. Can J Aquat Sci 51: 516–526. [CrossRef] [Google Scholar]
  • Neuheimer AB, Taggart CT. 2007. The growing degree-day and fish size-at-age: the overlooked metric. Can J Aquat Sci 64: 375–385. [CrossRef] [Google Scholar]
  • Raat AJP. 1985. Analysis of angling vulnerability of common carp, Cyprinus carpio L., in catch-and-release angling in ponds. Aquacult Fish Manag 16: 171–187. [Google Scholar]
  • Saulamo K, Thoresson G. 2005. Management of pikeperch migrating over management areas in a Baltic Archipelago area. Ambio 34: 120–124. [Google Scholar]
  • Simpfendorfer CA. 2000. Growth rates of juvenile dusky shark, Carcharhinus obscurus (Lesueur, 1818), from southwestern Australia estimated from tag-recapture data. Fish Bull 98: 811–822. [Google Scholar]
  • Specziár A. 2010. Fish fauna of Lake Balaton: stock composition, living conditions of fish and directives of the modern utilization of the fish stock. Acta Biol Debr Suppl Oecol Hung 23 (Hydrobiol Monogr vol. 2): 7–185. (In Hungarian with an English summary). [Google Scholar]
  • Specziár A. 2011. Size-dependent prey selection in piscivorous pikeperch Sander lucioperca and Volga pikeperch S. volgensis shaped by bimodal prey size distribution. J Fish Biol 79: 1895–1917. [CrossRef] [PubMed] [Google Scholar]
  • Specziár A, Erős T. 2016. Freshwater resources and fisheries in Hungary. In: Craig JF, ed. Freshwater Fisheries Ecology. Oxford: Wiley, pp. 196–200. [Google Scholar]
  • Specziár A, Rezsu E. 2009. Feeding guilds and food resource partitioning in a lake fish assemblage: an ontogenetic approach. J Fish Biol 75: 247–267. [CrossRef] [PubMed] [Google Scholar]
  • Specziár A, Turcsányi B. 2014. Effect of stocking strategy on distribution and recapture rate of common carp Cyprinus carpio L., in a large and shallow temperate lake: implications for recreational put-and-take fisheries management. J Appl Ichthyol 30: 887–894. [CrossRef] [Google Scholar]
  • Specziár A, Turcsányi B. 2017. Management of pikeperch stocking in Lake Balaton: effect of season, area, fish size and method of release on the rate and distribution of recaptures. Knowl Manag Aquat Ecosyst 418: article No. 52. [CrossRef] [Google Scholar]
  • Specziár A, Erős T, György ÁI, Tátrai I, Bíró P. 2009. A comparison between the benthic Nordic gillnet and whole water column gillnet for characterizing fish assemblages in the shallow Lake Balaton. Ann Limnol - Int J Lim 45: 171–180. [Google Scholar]
  • Tölg L, Specziár A, Bíró P. 1997. Studies on the carp (Cyprinus carpio L.) stocks in Kis-Balaton Reservoir and Lake Balaton. Hidrol Közl 77: 52–54. (In Hungarian with an English summary). [Google Scholar]
  • Vilizzi L, Copp GH. 2017. Global patterns and clines in the growth of common carp Cyprinus carpio. J Fish Biol 91: 3–40. [CrossRef] [PubMed] [Google Scholar]
  • Vilizzi L, Tarkan AS, Copp GH. 2015. Experimental evidence from causal criteria analysis for the effects of common carp Cyprinus carpio on freshwater ecosystems: a global perspective. Rev Fish Sci Aquacult 23: 253–290. [CrossRef] [Google Scholar]
  • von Bertalanffy L. 1957. Quantitative laws in metabolism and growth. Q Rev Biol 32: 217–231. [CrossRef] [PubMed] [Google Scholar]
  • Vostradovský J. 1991. Carp (Cyprinus carpio L.) “put-and-take” fisheries in the management of angling waters in Czechoslovakia. In: Cowx IG, ed. Catch effort sampling strategies. Their application in freshwater fisheries management. Fishing New Books, Oxford: Blackwell, pp. 100–107. [Google Scholar]
  • Weber MJ, Brown ML, Willis DW. 2010. Spatial variability of common carp populations in relation to lake morphology and physicochemical parameters in the upper Midwest United States. Ecol Freshw Fish 19: 555–565. [CrossRef] [Google Scholar]
  • Wootton RJ. 1998. Ecology of Teleost Fishes, 2nd ed., Fish and Fisheries Series 24. Dordrecht: Kluwer Academic Publisher. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.