Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 419, 2018
Article Number 13
Number of page(s) 13
Published online 16 February 2018
  • Adamczuk M, Mieczan T, Nawrot D, Rechulicz J. 2015. Indirect effect of environmental factors on interactions between microbial and classical food webs in freshwater ecosystems. Ann Limnol-Internat J Limnol 51: 49–58. [Google Scholar]
  • Arndt H. 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) − a review. Hydrobiologia 256: 231–246. [CrossRef] [Google Scholar]
  • Augustin H, Foissner W, Adam H. 1984. An improved pyridinated silver carbonate method which need few specimens and yields permanent slides of impregnation ciliates (Protozoa, Ciliophora). Mikroskopie 41: 134–137. [Google Scholar]
  • Biyu S. 2000. Planktonic protozooplankton (ciliates, heliozoans and testaceans) in two shallow mesotrophic lakes in China − a comparative study between a macrophyte-dominated lake (Biandantang) and algal lake (Houhu). Hydrobiologia 434: 151–163. [CrossRef] [Google Scholar]
  • Brett MT, Goldman CR. 1996. A meta-analysis of the freshwater trophic cascade. Proceed Nat Acad Sci 93: 7723–7726. [Google Scholar]
  • Caron DA. 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy and comparison with other procedures. Appl Environ Microbiol 46: 491–498. [PubMed] [Google Scholar]
  • Dawidek J, Sobolewski S, Turczyński M. 2004. Transformations of catchmet-areas of lakes converted into storage reservoirs in the Wieprz-Krzna Canal system. Limnol Rev 4: 67–74. [Google Scholar]
  • Enterkin SA, Wallace JB, Eggert SL. 2007. The response of Chironomidae (Dipetra) to a long term exclusion of terrestrial organic matter. Hydrobiologia 575: 401–413. [CrossRef] [Google Scholar]
  • Fermani P, Diovisalvi N, Torremorell A, Lagomarsioni L, Zagarese HE, Unrein F. 2013. The microbial food web structure of a hypertrophic warm-temperate shallow lake, as affected by contrasting zooplankton assemblages. Hydrobiologia 714: 115–130. [CrossRef] [Google Scholar]
  • Foissner W, Berger H. 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes and waste waters, with notes on their ecology. Freshw Biol 35: 375–470. [Google Scholar]
  • Foissner W, Berger H, Schaumburg J. 1999. Identification and ecology of limnetic plankton ciliates. Informationsberichte des Bayer. München: Landesamtes für Wasserwirtschaft. [Google Scholar]
  • Fukuharada H, Yasuda K. 1989. Ammonium excretion by some freshwater zoobenthos from a eutrophic lake. Hydrobiologia 173: 1–8. [CrossRef] [Google Scholar]
  • Gaiser EE, Texler J.C, Richards JH, Childers DL, Lee D, Edwards AL, Scinto LJ, Jayachandaran K, Noe GB, Jones RD. 2005. Cascading ecological effects of low-level phosphorous enrichment in the Florida Everglades. J Environ Qual 34: 717–723. [CrossRef] [PubMed] [Google Scholar]
  • Golterman HL. 1969. Methods for chemical analysis of freshwaters. Oxford, Edinburgh: Blackwell Scientific Publications. [Google Scholar]
  • Gross EM. 2003. Allelopathy in aquatic autotrophs. Crit Rev Plant Sci 22: 313–339. [CrossRef] [Google Scholar]
  • Grutters BMC, Gross EM, van Donk E, Bakker ES. 2017. Periphyton density is similar on native and non-native plant species. Freshwat Biol 62: 906–915. [CrossRef] [Google Scholar]
  • Haglund AL, Hillebrand H. 2005. The effect of grazing and nutrient supply on periphyton associated bacteria. FEMS Microbiology Ecology 52: 31–41. [CrossRef] [PubMed] [Google Scholar]
  • Hao B, Wu H, Cao Y, Xing W, Jeppesen E, Li W. 2017. Comparison of periphyton communities on natural and artificial macrophytes with contrasting morphological structures. Freshwat Biol 62: 1783–1793. [CrossRef] [Google Scholar]
  • Hitzfeld BC, Hőger SJ, Dietrech DR. 2000. Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environ Health Perspect 108: 113–122. [CrossRef] [PubMed] [Google Scholar]
  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Pedersen LJ, Jensen L. 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164. [CrossRef] [Google Scholar]
  • Jeppesen E, Lauridsen TL, Kairesalo T, Perrow MR. 1998. Impact of submerged macrophytes on fish-zooplankton interactions in Lakes. In: Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K. eds. The structuring role of submerged macrophytes in Lakes. New York: Springer Verlag, pp. 91–114. [Google Scholar]
  • Jeppesen E, Jensen PJ, Sondegaard M, Lauridsen T, Landkildehus F. 2000. Trophic structure, species richness and biodiversity in Danisch lakes: changes along a phosphorus gradient. Freshw Biol 45: 201–218. [CrossRef] [Google Scholar]
  • Jeppesen E, Sondergaard M, Meerhoff M, Lauridsen TL, Jensen JP. 2007. Shallow lake restoration by nutrient loading reduction − some recent findings and challenges ahead. Hydrobiologia 584: 239–252. [CrossRef] [Google Scholar]
  • Jones JI, Moss B, Eaton JW, Young JO. 2000. Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists? Freshw Biol 43: 591–604. [CrossRef] [Google Scholar]
  • Jones JI, Sayer CD. 2003. Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology 84: 2155–2167. [CrossRef] [Google Scholar]
  • Kairesalo T, Kornijów R, Luokkanen E. 2000. Trophic cascade structuring a plankton community in a strongly vegetated lake littoral. Verh Int Verein Limnol 26: 1846−1851. [Google Scholar]
  • Lawrence JM, Gresens SE. 2004. Food web response to nutrient enrichment in rural and urban streams. J Freshw Ecol 3: 375–385. [CrossRef] [Google Scholar]
  • Leibold MA. 1996. A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. Am Nat 147: 784–812. [CrossRef] [Google Scholar]
  • McQueen DJ, Post JR, Mills EL. 1986. Trophic relationships in freshwater pelagic ecosystems. Can J Fish Aquat Sci 43: 1571–1581. [CrossRef] [Google Scholar]
  • McQueen DJ, Johannes MR, Post JR, Stewart TJ, Lean DR. 1989. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol Monogr 59: 289–309. [CrossRef] [Google Scholar]
  • Mieczan T, Tarkowska-Kukuryk M. 2013. Diurnal dynamics of the microbial loop in peatlands: structure, function and relationship to environmental parameters. Hydrobiologia 717: 189–201. [CrossRef] [Google Scholar]
  • Mieczan T, Adamczuk M, Tarkowska-Kukuryk M, Nawrot D. 2016. Effect of water chemistry on zooplanktonic and microbial communities across freshwater ecotones in different macrophyte-dominated shallow lakes. J Limnol 2: 262–274. [Google Scholar]
  • Mulderij G, van Nes EH, van Donk E. 2007. Macrophyte-phytoplankton interactions: the relative importance of allelopathy versus other factors. Ecol Model 204: 85–92. [CrossRef] [Google Scholar]
  • Obolewski K, Bąkowska M. 2017. Epiphytic invertebrate patterns in coastal lakes along a gradient of salinity and water exchange with the sea. Estuar, Coast Shelf Sci 197: 150–158. [CrossRef] [Google Scholar]
  • Pierce RW, Turner JT. 1992. Ecology of planktonic ciliates in marine food webs. Rev Aquat Sci 6: 139–181. [Google Scholar]
  • Pomeroy LR. 1974. The ocean's food web, a changing paradigm. Bioscience 24: 499–504. [CrossRef] [Google Scholar]
  • Porter KG, Fleig YS. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25: 943–948. [Google Scholar]
  • Quinn GP, Keough MJ. 2002. Experimental design and data analysis for biologists. Cambridge: Cambridge University Press. [CrossRef] [Google Scholar]
  • Rott E. 1981. Some results from phytoplankton counting intercalibrations. Swiss J Hydrol 43: 34–62. [Google Scholar]
  • Sarnelle O. 1992. Nutrient enrichment and grazer effects on phytoplankton in lakes. Ecology 73: 551–560. [CrossRef] [Google Scholar]
  • Segovia BT, Pereira DG, Bini LM, de Meira BR, Nishida S, Lansac-Toha FA, Velho LFM. 2015. The role of microorganisms in a planktonic food web of a floodplain lake. Microb Ecol 69: 225–233. [CrossRef] [PubMed] [Google Scholar]
  • Schindler DE, Scheuerell MD. 2002. Habitat coupling in lake ecosystems. Oikos 57: 25−41. [CrossRef] [Google Scholar]
  • Ter Braak CJF. 1988–1992. CANOCO–FORTRAN program for Canonical Community Ordination (version 2.1). Ithaca: Microcomputer Power. [Google Scholar]
  • Tarkowska-Kukuryk M, Mieczan T. 2008 Diet composition of epiphytic chironomids of the Cricotopus sylvestris group in a shallow hypertrophic lake. Aquat Insects 30: 285–294. [CrossRef] [Google Scholar]
  • Tarkowska-Kukuryk M. 2013. Periphytic algae as food source for grazing chironomids in a shallow phytoplankton dominated lake. Limnologic 43: 254–264. [Google Scholar]
  • Tarkowska-Kukuryk M, Mieczan T. 2017. Submerged macrophytes as bioindicators of environmental conditions in shallow lakes in eastern Poland. Ann Limnol − Int J Lim 53: 27–34. [Google Scholar]
  • van den Hoek C, Mann DG, Jahns HM. 1995. Algae. An introduction to phycology. Cambridge: Cambridge University Press, 623 p. [Google Scholar]
  • Vermaat JE. 2005. Periphyton dynamics and influencing factors. In: Azim ME, Verdegem MCJ, van Dam AA, Beveridge MCM eds. Periphyton. Ecology, exploitation and management. London, UK: CABI Publishing, pp. 35–49. [CrossRef] [Google Scholar]
  • Wickham SA, Nagel S, Hillebrand H. 2004. Control of epibenthic ciliate communities by grazers and nutrients. Aquat Microb Ecol 35: 153–162. [CrossRef] [Google Scholar]
  • Wiederholm T. 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica scandinavica. Supplement 19. Motala: Borgströms Tryckeri AB, 538 p. [Google Scholar]
  • Wetzel RG. 1990. Land-water interfaces: metabolic and limnological regulators. Int Ver Theor Angew Limnol 24: 6–24. [Google Scholar]
  • Xu J, Xie P, Zhang M, Yang H. 2005. Variation in stable isotope signatures of seston and a zooplanktivorous fish in a eutrophic Chinese lake. Hydrobiologia 541: 215–220. [CrossRef] [Google Scholar]
  • Zeng L, Liu B, Dai Z, Zhou Q, Kong L, Zhang Y, He F, Wu Z. 2017. Analyzing the effect of four submerged macrophytes with two contrasting architectures on zooplankton: a mesocosm experiment. J Limnol 76: 581–590. [Google Scholar]
  • Zhang N, Li H, Jeppesen E, Li W. 2013. Influence of substrate type on periphyton biomass and nutrient state at contrasting high nutrient levels in a subtropical shallow lakes. Hydrobiologia 710: 129–141. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.