Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 24
Number of page(s) 4
Published online 23 May 2017
  • Attermeyer K, Hornick T, Kayler ZE, et al. 2014. Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition. Biogeosciences 11(6): 1479–1489. [CrossRef] [Google Scholar]
  • Berggren M, Laudon H, Haei M, Strom L, Jansson M. 2010a. Efficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sources. ISME J 3: 408–416. [CrossRef] [Google Scholar]
  • Berggren M, Ström L, Laudon H, et al. 2010b. Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers. Ecol Lett 13(7): 870–880. [CrossRef] [Google Scholar]
  • Boschker HTS, Middelburg JJ. 2002. Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40(2): 85–95. [CrossRef] [PubMed] [Google Scholar]
  • Brett MT, Arhonditsis GB, Chandra S, Kainz MJ. 2012. Mass flux calculations show strong allochthonous support of freshwater zooplankton production is unlikely. PLOS ONE 7(6): e39508. [CrossRef] [PubMed] [Google Scholar]
  • Chu F-LE, Lund ED, Podbesek JA. 2008. Quantitative significance of n-3 essential fatty acid contribution by heterotrophic protists in marine pelagic food webs. Mar Ecol Prog Ser 354: 85–95. [CrossRef] [Google Scholar]
  • Cole JJ, Carpenter SR, Pace ML, et al. 2006. Differential support of lake food webs by three types of terrestrial organic carbon. Ecol Lett 9(5): 558–568. [CrossRef] [PubMed] [Google Scholar]
  • Cooke SL, Fischer JM, Kessler K, et al. 2015. Direct and indirect effects of additions of chromophoric dissolved organic matter on zooplankton during large-scale mesocosm experiments in an oligotrophic lake. Freshw Biol 60(11): 2362–2378. [CrossRef] [Google Scholar]
  • De Kluijver A, Ning J, Liu Z, Jeppesen E, Gulati RD, Middelburg JJ. 2015. Macrophytes and periphyton carbon subsidies to bacterioplankton and zooplankton in a shallow eutrophic lake in tropical China. Limnol Oceanogr 60: 375–385. [CrossRef] [Google Scholar]
  • Ducklow HW, Purdie DA, Williams PJL, Davies JM. 1986. Bacterioplankton – a sink for carbon in a coastal marine plankton community. Science 232: 865–867. [CrossRef] [PubMed] [Google Scholar]
  • Faithful CL, Huss M, Vrede T, Bergström AK. 2011. Bottom–up carbon subsidies and top–down predation pressure interact to affect aquatic food web structure. Oikos 120: 311–320. [CrossRef] [Google Scholar]
  • Freese HM, Martin-Creuzburg D. 2013. Food quality of mixed bacteria-algae diets for Daphnia Magna. Hydrobiologia 715: 63–76. [CrossRef] [Google Scholar]
  • Geddes P. 2015. Experimental evidence that subsidy quality affects the temporal variability of recipient zooplankton communities. Aquat Sci 77: 609–621. [CrossRef] [Google Scholar]
  • Guckert JB, Antworth CP, Nichols PD, White DC. 1985. Phospholipid ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31: 147–158. [CrossRef] [Google Scholar]
  • Hauvermale A, Kuner J, Rosenzweig B, Guerra D, Diltz S, Metz JG. 2006. Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type 1 fatty acid synthase. Lipids 41: 739–747. [CrossRef] [PubMed] [Google Scholar]
  • Hitchcock, JN, Mitrovic SM, Hadwen WL, et al. 2016. Terrestrial dissolved organic carbon subsidizes estuarine zooplankton: an in situ mesocosm study. Limnol Oceanogr 61(1): 254–267. [CrossRef] [Google Scholar]
  • Jones RI. 2000. Mixotrophy in planktonic protists: an overview. Freshw Biol 45(2): 219–226. [CrossRef] [Google Scholar]
  • Karlsson J, Jonsson A. 2007. Respiration of allochthonous organic carbon in unproductive forest lakes determined by the keeling plot method. Limnol Oceanogr 52(2): 603–608. [CrossRef] [Google Scholar]
  • Karlsson J, Jonsson A, Meili M, Jansson M. 2003. Control of zooplankton dependence on allochthonous organic carbon in humic and clear-water lakes in northern Sweden. Limnol Oceanogr 48: 269–276. [CrossRef] [Google Scholar]
  • Karlsson J, Lymer D, Vrede K, Jansson M. 2007. Differences in efficiency of carbon transfer from dissolved organic carbon to two zooplankton groups: an enclosure experiment in an oligotrophic lake. Aquat Sci 69(1): 108–114. [CrossRef] [Google Scholar]
  • Kelly P, Craig N, Solomon CT, Weidel BC, Zwart JA, Jones S. 2016. Experimental whole-lake increase of dissolved organic carbon concentration produces unexpected increase in crustacean zooplankton density. Global Change Biol 22(8): 2766–2775. [CrossRef] [Google Scholar]
  • Martin-Creuzburg D, Beck B, Freese HM. 2011. Food quality of heterotrophic bacteria for Daphnia magna: evidence for a limitation by sterols. FEMS Microbiol Ecol 76: 592–601. [CrossRef] [PubMed] [Google Scholar]
  • Paerl HW. 1974. Bacterial uptake of dissolved organic matter in relation to detrital aggregation in marine and freshwater systems. Limnol Oceanogr 19(6): 966–972. [CrossRef] [Google Scholar]
  • Rösel S, Rychla A, Wurzbacher C, Grossart H-P. 2012. Effects of pollen leaching and microbial degradation on organic carbon and nutrient availability in lake water. Aquat Sci 74: 87–99. [CrossRef] [Google Scholar]
  • Sherr EB, Sherr BF. 1994. Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28(2): 223–235. [CrossRef] [PubMed] [Google Scholar]
  • Solomon CT, Jones SE, Weidel BC, et al. 2015. Ecosystem of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future changes. Ecosystems 18: 376–389. [CrossRef] [Google Scholar]
  • Taipale SJ, Brett MT, Hahn MW, et al. 2014. Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids. Ecology 95(2): 563–576. [CrossRef] [PubMed] [Google Scholar]
  • Tanentzap AJ, Szkokan-Emilson EJ, Kielstra BW, Arts MT, Yan ND, Gunn JM. 2015. Forests fuel fish growth in freshwater deltas. Nat Commun 5: 4077. [Google Scholar]
  • Tittel J, Wiehle I, Wannicke N, Kampe H, Poerschmann J, Meier J. 2009. Utilisation of terrestrial carbon by osmotrophic algae. Aquat Sci 71(1): 46–54. [CrossRef] [Google Scholar]
  • Tranvik LJ. 1998. Degradation of dissolved organic matter in humic waters by bacteria. In: Hessen DO, Tranvik LJ, eds. Aquatic humic substances. New York: Springer-Verlag, pp. 259–283. [CrossRef] [Google Scholar]
  • Wenzel A, Bergström A-K, Jansson M, Vrede T. 2012. Survival, growth and reproduction of Daphnia galeata feeding on single and mixed Pseudomonas and Rhodomonas diets. Freshw Biol 57: 835–846. [CrossRef] [Google Scholar]
  • Wurzbacher CM, Bärlocher F, Grossart H-P. 2010. Fungi in lake ecosystems. Aquat Microb Ecol 59:125–149. [CrossRef] [Google Scholar]
  • Zhang X, Tang Y, Jeppesen E, Liu Z. 2016. Biomanipulation-induced reduction of sediment phosphorus in a tropical shallow lake. Hydrobiologia, doi:10.1007/s10750-016-3079-x. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.