Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 15
Number of page(s) 9
Published online 08 March 2017
  • Agrawal AA. 1998. Algal defense, grazers, and their interactions in aquatic trophic cascades. Acta Oecol 19: 331–337. [CrossRef] [Google Scholar]
  • Angeler DG, Johnson RK. 2013. Algal invasions, blooms and biodiversity in lakes: accounting for habitat-specific responses. Harmful Algae 23: 60–69. [CrossRef] [Google Scholar]
  • Angeler DG, Trigal C, Drakare S, Johnson RK, Goedkoop W. 2010. Identifying resilience mechanisms to recurrent ecosystem perturbations. Oecologia 164: 231–241. [CrossRef] [PubMed] [Google Scholar]
  • Becker C, Boersma M. 2005. Differential effects of phosphorus and fatty acids on Daphnia growth and reproduction. Limnol Oceanogr 50: 388–397. [CrossRef] [Google Scholar]
  • Björnerås C. 2014. Grazing resistance due to trichocysts may boost bloom formation in the HAB species Gonyostomum semen. MSc. Thesis, University of Lund, Lund. [Google Scholar]
  • Buskey EJ. 1997. Behavioral components of feeding selectivity of the heterotrophic dinoflagellate Protoperidinium pellucidum. Mar Ecol-Prog Ser 153: 77–89. [CrossRef] [Google Scholar]
  • Clough J, Strom S. 2005. Effects of Heterosigma akashiwo (Raphidophyceae) on protist grazers: laboratory experiments with ciliates and heterotrophic dinoflagellates. Aquat Microb Ecol 39: 121–134. [CrossRef] [Google Scholar]
  • Cronberg G, Lindmark G, Björk S. 1988. Mass development of the flagellate Gonyostomum semen (Raphidophyta) in Swedish forest lakes – an effect of acidification? Hydrobiologia 161: 217–236. [CrossRef] [Google Scholar]
  • Figueroa RI., Rengefors K. 2006. Life cycle and sexuality of the freshwater raphidophyte Gonyostomum semen (Raphidophyceae). J Phycol 42: 859–871. [CrossRef] [Google Scholar]
  • Findlay DL, Paterson MJ, Hendzell LL, Kling HJ. 2005. Factors influencing Gonyostomum semen blooms in a small boreal reservoir lake. Hydrobiologia 533: 243–252. [CrossRef] [Google Scholar]
  • Fott B. VIII. Klaasse Chloromonadophyceae. In: Huber-Pestalozzi G, ed. Das Phytoplankton des Süsswassers, Vol. 3, 2nd edn. Stuttgart: Schweizerbart, 1968, pp. 79–93. [Google Scholar]
  • Fu M, Koulman A, Van Russel M, et al. 2004. Chemical characterization of three hemolytic compounds from the micro algal species Fibrocapsa japonica (Raphidophyceae). Toxicon 43: 355–363. [CrossRef] [PubMed] [Google Scholar]
  • Ger KA, Hansson LA, Lürling M. 2014. Understanding cyanobacteria – zooplankton interactions in a more eutrophic world. Freshwater Biol 59: 1783–1798. [CrossRef] [Google Scholar]
  • Grossart HP, Simon M. 1993. Limnetic macroscopic organic aggregates (lake snow): occurrence, characteristics, and microbial dynamics in Lake Constance. Limnol Oceanogr 38: 532–546. [CrossRef] [Google Scholar]
  • Gulati R, Demott W. 1997. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwater Biol 38: 753–768. [CrossRef] [Google Scholar]
  • Gulati RD, Bronkhorst M, Van Donk E. 2001. Feeding in Daphnia galeata on Oscillatoria limnetica and on detritus derived from it. J Plankton Res 23: 705–718. [CrossRef] [Google Scholar]
  • Gutseit K, Berglund O, Granéli W. 2007. Essential fatty acids and phosphorus in seston from lakes with contrasting terrestrial dissolved organic carbon content. Freshwater Biol 52: 28–38. [Google Scholar]
  • Hagman CHC, Ballot A, Hjermann DØ, Skjelbred B, Brettum P, Ptacnik R. 2015. The occurrence and spread of Gonyostomum semen (Ehr.) Diesing (Raphidophyceae) in Norwegian lakes. Hydrobiologia 744: 1–14. [CrossRef] [Google Scholar]
  • Hardy J. 2008. Washington State recreational guidance for microcystins (provisional) and anatoxin-a (interim/provisional). Washington: Washington State Department of Health. [Google Scholar]
  • Havens KE. 1989. Seasonal succession in the plankton of a naturally acidic, highly humic lake in Northeastern Ohio, USA. J Plankton Res 11: 1321–1327. [CrossRef] [Google Scholar]
  • Hehmann A, Krienitz L, Koschel R. 2001. Long-term phytoplankton changes in an artificially divided, top-down manipulated humic lake. Hydrobiologia 448: 83–96. [CrossRef] [Google Scholar]
  • Hessen D, Van Donk E. 1993. Morphological changes in Scenedesmus induced by substances released from Daphnia. Arch Hydrobiol 127: 129–140. [Google Scholar]
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–422. [CrossRef] [Google Scholar]
  • Hongve D, Lovstad Ø, Bjorndalen K. 1988. Gonyostomum semen – a new nuisance to bathers in Norwegian lakes. Verh Int Verein Limnol 23: 430–434. [Google Scholar]
  • Hutorowicz A, Szeląg-Wasielewska E, Grabowska M, Owsianny P, Pęczuła W, Luścińska M. 2006. Występowanie Gonyostomum semen (Raphidophyceae) w Polsce (The distribution of Gonyostomum semen in Poland). Fragm Florist Geobot Pol 13: 399–409. [Google Scholar]
  • ISO 10260. 1992. Water quality – measurement of biochemical parameters – spectrometric determination of the chlorophyll-a concentration. Warsaw: PKN. [Google Scholar]
  • ISO 6341. 2012. Water quality – determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) – acute toxicity test. [Google Scholar]
  • Johansson KSL, Vrede T, Lebret K, Johnson RK. 2013. Zooplankton Feeding on the Nuisance Flagellate Gonyostomum semen. PLoS ONE 8: 1–6. [CrossRef] [Google Scholar]
  • Johansson KS, Trigal C, Vrede T, van Rijswijk P, Goedkoop W, Johnson RK. 2016. Algal blooms increase heterotrophy at the base of boreal lake food webs‐evidence from fatty acid biomarkers. Limnol Oceanogr 61: 1563–1573. [CrossRef] [Google Scholar]
  • Kamiyama T, Itakura S, Nagasaki K. 2000. Changes in microbial loop components: effects of a harmful algal bloom formation and its decay. Aquat Microb Ecol 21: 21–30. [CrossRef] [Google Scholar]
  • Kampe H, König-Rinke M, Petzoldt T, Benndorf J. 2007. Direct effects of Daphnia-grazing, not infochemicals, mediate a shift towards large inedible colonies of the gelatinous green alga Sphaerocystis schroeteri. Limnologica 37: 137–145. [CrossRef] [Google Scholar]
  • Karosiene J, Kasperovičiene J, Koreiviene J, Vitonyte I. 2014. Assessment of the vulnerability of Lithuanian lakes to expansion of Gonyostomum semen (Raphidophyceae). Limnologica 45: 7–15. [CrossRef] [Google Scholar]
  • Kiorboe T, Hansen JLS. 1993. Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material. J Plankton Res 15: 993–1018. [CrossRef] [Google Scholar]
  • Lampert W. 1987. Laboratory studies on zooplankton-cyanobacteria interactions. New Zeal J Mar Fresh 21: 483–490. [CrossRef] [Google Scholar]
  • Le Cohu R, Guitard J, Comoy N, Brabet J. 1989. Gonyostomum semen, a potential nuisance in large French reservoirs? The case of the Pareloup Lake. Arch Hydrobiol 117: 225–236. [Google Scholar]
  • Lebret K, Fernández Fernández M, Hagman CH, Rengefors K, Hansson L-A. 2012. Grazing resistance allows bloom formation and may explain invasion success of Gonyostomum semen. Limnol Oceanogr 57: 727–734. [CrossRef] [Google Scholar]
  • Lepistö L, Antikainen S, Kivinen J. 1994. The occurrence of Gonyostomum semen (Ehr.) Diesing in Finnish lakes. Hydrobiologia 273: 1–8. [CrossRef] [Google Scholar]
  • Luo X, Liu Z, Gulati R. 2015. Cyanobacterial carbon supports the growth and reproduction of Daphnia: an experimental study. Hydrobiologia 743: 211–220. [CrossRef] [Google Scholar]
  • Luring M. 1999. Grazer-induced cenobial formation in clonal cultures of Scenedesmus obliquus (Chlorococcales, Chlorophyceae). J Phycol 35: 19–23. [CrossRef] [Google Scholar]
  • Marshall J-A, Nichols P, Hallegraeff G. 2002. Chemotaxonomic survey of sterols and fatty acids in six marine raphidophyte algae. J Appl Phycol 14: 255–265. [CrossRef] [Google Scholar]
  • Martel CM, Flynn KJ. 2008. Morphological controls on cannibalism in a planktonic marine phagotroph. Protist 159: 41–51. [CrossRef] [PubMed] [Google Scholar]
  • Martin-Creuzburg D, von Elert E. 2009. Good food versus bad food: the role of sterols and polyunsaturated fatty acids in determining growth and reproduction of Daphnia magna. Aquat Ecol 43: 943–950. [CrossRef] [Google Scholar]
  • Mohamed ZA, Al-Shehri AM. 2012. The link between shrimp farm runoff and blooms of toxic Heterosigma akashiwo in Red Sea coastal waters. Oceanologia 54: 287–309. [CrossRef] [Google Scholar]
  • Negro A, De Hoyos C, Vega J. Phytoplankton structure and dynamics in Lake Sanabria and Valparaíso reservoir (NW Spain). In: Reynolds CS, Dokulil M, Padisák J, eds. The trophic spectrum revisited. Netherlands: Springer, 2000, pp. 25–37. [CrossRef] [Google Scholar]
  • Okaichi T, ed. 2004. Red tides. Terra Scientific Publishing Company, Tokyo. Dodrecht: Kluwer Academic Publishers. [Google Scholar]
  • Pęczuła W. 2013. Habitat factors accompanying the mass appearances of nuisance algal species Gonyostomum semen (Ehr.) Diensig in humic lakes of Eastern Poland. Pol J Ecol 61: 535–543. [Google Scholar]
  • Pęczuła W, Poniewozik M, Szczurowska A. 2013. Gonyostomum semen (Ehr.) Diesing bloom formation in nine lakes of Polesie region (Central-Eastern Poland). Ann Limnol - Int J Lim 49: 301–308. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pithart D, Pechar L, Mattsson G. 1997. Summer blooms of raphidophyte Gonyostomum semen and its diurnal vertical migration in a foodplain pool. Algol Stud 85: 119–133. [Google Scholar]
  • Pohnert G, Steinke M, Tollrian R. 2007. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol Evol 22: 198–204. [CrossRef] [PubMed] [Google Scholar]
  • Rengefors K, Pålsson C, Hansson LA, Heiberg L. 2008. Cell lysis of competitors and osmotrophy enhance growth of the bloom forming alga Gonyostomum semen. Aquat Microb Ecol 51: 87–96. [CrossRef] [Google Scholar]
  • Rengefors K, Weyhenmeyer GA, Bloch I. 2012. Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes. Harmful Algae 18: 65–73. [CrossRef] [Google Scholar]
  • Repka S, van der Vlies M, Vijverberg J. 1998. Food quality of detritus derived from the filamentous cyanobacterium Oscillatoria limnetica for Daphnia galeata. J Plankton Res 20: 2199–2205. [CrossRef] [Google Scholar]
  • South GR, Whittick A. 1987. An introduction to phycology. London: Blackwell Science Ltd. [Google Scholar]
  • Strom SL, Buskey EJ. 1993. Feeding, growth, and behavior of the thecate heterotrophic dinoflagellate Oblea rotunda. Limnol Oceanogr 38: 965–977. [CrossRef] [Google Scholar]
  • Tillmann U. 2004. Interactions between planktonic microalgae and protozoan grazers. J Eukaryot Microbiol 51: 156–168. [CrossRef] [PubMed] [Google Scholar]
  • Tillmann U, Reckermann M. 2002. Dinofagellate grazing on the raphidophyte Fibrocapsa japonica. Aquat Microb Ecol 26: 247–257. [CrossRef] [Google Scholar]
  • Trigal C, Goedkoop W, Johnson RK. 2011. Changes in phytoplankton, benthic invertebrate and fish assemblages of boreal lakes following invasion by Gonyostomum semen. Freshwater Biol 56: 1937–1948. [CrossRef] [Google Scholar]
  • Tsuji KI, Watanuki T, Kondo F, et al. 1995. Stability of microcystins from cyanobacteria-II. Effect of UV light on decomposition and isomerization. Toxicon 33: 1619–1631. [CrossRef] [PubMed] [Google Scholar]
  • Van Boekel WHM, Hansen FC, Riegman R, Bak RPM. 1992. Lysis-induced decline of a Phaeocystis spring bloom and coupling with the microbial foodweb. Mar Ecol-Prog Ser Oldendorf 81: 269–276. [Google Scholar]
  • Van Donk E, Luring M, Hessen DO, Lokhorst GM. 1997. Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers. Limnol Oceanogr 42: 357–364. [CrossRef] [Google Scholar]
  • Vetrova ZI, Okhapkin AG. 1990. Predstaviteli Raphidopyta v vodoemakh Sovetskogo Sojuza (Representatives of Raphidophyta in reservoirs of the Soviet Union). Botanicheskij Zhurnal 5: 631–636. [Google Scholar]
  • Vollenweider RA. 1969. A manual on methods for measuring primary production in aquatic environments. Blackwell: Oxford-Edinburgh. [Google Scholar]
  • Williamson CE, Sanders RW, Moeller RE, Stutzman PL. 1996. Utilization of subsurface food resources for zooplankton reproduction: Implications for diel vertical migration theory. Limnol Oceanogr 41: 224–233. [CrossRef] [Google Scholar]
  • Wolfe G. 2000. The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impacts. Biol Bull 198: 225–244. [CrossRef] [PubMed] [Google Scholar]
  • Yan T, Zhou M, Fu M, et al. 2003. The preliminary study on toxicity of Heterosigma akashiwo and the toxicity source. Oceanol Limnol Sin 34: 50–55. [Google Scholar]
  • Yoshida T, Hairston NG, Ellner SP. 2004. Evolutionary trade-off between defence against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris. Proc R Soc London B Biol 271: 1947–1953. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.