Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 10
Number of page(s) 8
Published online 28 February 2017
  • Abesser C, Shand P, Gooddy D, Peach D. The role of alluvial valley deposits in groundwater surface water exchange in a Chalk river. In: Abesser C, Wagener T, Nuetzmann G., eds. Groundwater–surface water interaction: process understanding, conceptualization and modelling. Perugia: IAHS Press, 2008, pp. 11–20.
  • Berrie AD. 1992. The chalk stream environment. Hydrobiologia 248: 3–9. [CrossRef] [MathSciNet] [PubMed]
  • Bou C, Rouch R. 1967. Un nouveau champ de recherche sur la faune aquatique souterraine. Comp Rend Acad Sci 265: 369–370.
  • Boulton A, Findlay S, Marmonier P, Stanley E, Vallet M. 1998. The functional significance of the hyporheic zone in streams and rivers. Ann Rev Ecol Syst 29: 59–81. [CrossRef]
  • Boulton AJ. 2000. The subsurface macrofauna. In Jones JB, Mulholland PJ, eds. Streams and ground waters. San Diego, California: Academic Press, pp. 120–137.
  • Boulton AJ, Datry T, Kasahara T, Mutz M, Standford JA. 2010. Ecology and management of the hyporheic zone: stream–groundwater interactions of running waters and their floodplains. J North Am Benthol Soc 29: 26–40. [CrossRef]
  • Danielopol DL. 1976. The distribution of the fauna in the interstitial habitats of riverine sediments of the Danube and the Piestig (Austria). Int J Speleol 8: 23–51. [CrossRef]
  • Davy-Bowker J-D, Sweeting W, Wright N, Clark RT, Arnott S. 2006. The distribution of benthic and hyporheic macroinvertebrates from the heads and tails of riffles. Hydrobiologia 563: 109–123. [CrossRef] [MathSciNet] [PubMed]
  • Dole-Olivier MJ, Marmonier P, Creuzé des Châtelliers M, Martin D. 1994. Interstitial fauna associated with the alluvial deposits of the Rhone River (France). In: Danielopol D, Gibert J, Standford J, eds. Groundwater ecology. New York: Academic Press, pp. 140–176.
  • Dole-Olivier MJ, Marmonier P, Beffy JL. 1997. Response of invertebrates to lotic disturbances: is the hyporheic zone a patchy refugium? Freshwater Biol 37: 257–276. [CrossRef]
  • Evans EC, Petts GE. 1997. Hyporheic temperature patterns within riffles. Hydrolog Sci J 42: 199–213. [CrossRef]
  • Finch JW, Bradford RB, Hudson JA. 2004. The spatial distribution of groundwater flooding in a chalk catchment in southern England. Hydrol Process 18: 959–971. [CrossRef] [MathSciNet] [PubMed]
  • Flynn NJ, Paddison T, Whitehead PG. 2002. INCA modelling of the Lee system: strategies or the reduction of nitrogen loads. Hydrol Earth Syst Sci 6: 467–483. [CrossRef]
  • Franken RJ, Storey RG, Williams DD. 2001. Biological, chemical and physical characteristics of down-welling and up-welling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia 444: 183–195. [CrossRef] [MathSciNet] [PubMed]
  • Gledhill T. 1977. Numerical fluctuations of four species of subterranean amphipods during a five year period. Crustaceana Suppl 4: 144–152.
  • Gledhill T, Ladle M. 1969. Observations on the life history of the subterranean amphipod Niphargus aquilex aquilex Schiodte. Crustaceana 16: 51–56. [CrossRef] [MathSciNet] [PubMed]
  • Grapes TR, Bradley C, Petts GE. 2005. Dynamics of river-aquifer interactions along a chalk stream: the River Lambourn, UK. Hydrol Process 19: 2035–2053. [CrossRef] [MathSciNet] [PubMed]
  • Harrison SS, Harris IT. 2002. The effects of bank side management on chalk stream invertebrate communities. Freshwater Biol 47: 2233–2245. [CrossRef]
  • Harvey JW, Bencala KE. 1993. The effect of streambed topography on surface-subsurface water exchange in mountain catchments. Water Resour Res 29: 89–98. [CrossRef] [MathSciNet] [PubMed]
  • Hill AR, Limbourner DJ. 1998. Hyporheic zone chemistry and stream-subsurface exchange in two groundwater–fed streams. Can J Fish Aquat Sci 55: 495–506. [CrossRef] [MathSciNet] [PubMed]
  • Hunt GW, Stanley EH. 2003. Environmental factors influencing the composition and distribution of the hyporheic fauna in Oklahoma streams: variation across ecoregions. Fund Appl Limnol 158: 1–23.
  • Hynes HBN. 1983. Groundwater and stream ecology. Hydrobiologia 100: 93–99. [CrossRef] [MathSciNet] [PubMed]
  • Iversen TM. 1976. Life cycle and growth of Trichoptera in a Danish spring. Fund Appl Limnol 78: 482–493.
  • Jones JB, Fisher SG, Grimm NB. 1995. Vertical hydrologic exchange and ecosystem metabolism in a Sonoran Desert stream. Ecology 76: 942–952. [CrossRef] [MathSciNet] [PubMed]
  • Jones JI, Growns I, Arnold A, McCall S, Bowes M. 2015. The effects of increased flow and fine sediment on hyporheic invertebrates and nutrients in stream mesocosms. Freshwater Biol 60: 813–826. [CrossRef]
  • Marchant R. 1995. Seasonal variation in the vertical distribution of hyporheic invertebrates in an Australian upland river. Fund Appl Limnol 134: 441–457.
  • Olsen DA, Townsend CR. 2003. Hyporheic community composition in a gravel-bed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry. Freshwater Biol 48: 1363–1378. [CrossRef]
  • Orghidan T. 1955. Un nou domeniu de viata acvatica subterana “Biotopul hiporeic”. Bulet Sti Biol Acad RPR 7: 657–676.
  • Pacioglu O. 2010. Ecology of the hyporheic zone: a review. Cave Karst Sci 3: 69–76.
  • Pacioglu O. 2011. The effect of diffuse nitrate pollution and land use on hyporheic habitats in lowland English chalk rivers. PhD thesis. University of Roehampton, UK.
  • Pacioglu O, Shaw P, Robertson A. 2012. Patch scale response of hyporheic invertebrates to fine sediment removal in two chalk rivers. Fundam Appl Limnol 4: 283–288. [CrossRef]
  • Pacioglu O, Moldovan OT, Shaw P, Robertson A. 2016. Response of invertebrates from the hyporheic zone of chalk rivers to eutrophication and land use. Environ Sci Pollut Res 23: 4741. [CrossRef]
  • Palmer MA. 1990. Temporal and spatial dynamics of meiofauna within the hyporheic zone of Goose Creek, Virginia. J North Am Benthol Soc 9: 17–25. [CrossRef]
  • Pretty JL, Hilldrew AG, Trimmer M. 2006. Nutrient dynamics in relation to surface-groundwater hydrological exchange in a groundwater fed chalk stream. J Hydrol 330: 84–100. [CrossRef]
  • Riley WD, Pawson MG, Quayle V, Ives MJ. 2009. The effects of stream canopy management on macroinvertebrate communities and juvenile salmonid production in a chalk stream. Fisheries Manage Ecol 16: 100–111. [CrossRef]
  • Sear DA, Armitage PD, Dawson FH. 1999. Groundwater dominated rivers. Hydrol Process 13: 255–276. [CrossRef] [MathSciNet] [PubMed]
  • Snook D, Whitehead PG. 2004. Water quality and ecology of the River Lee: mass balance and a review of temporal and spatial data. Hydrol Earth Syst Sci 8: 630–650. [CrossRef]
  • Stanford JA, Ward JV. 1993. An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor. J North Am Benthol Soc 12: 48–60. [CrossRef]
  • Stubbington R, Wood PJ, Boulton AJ. 2009. Low flow controls on benthic and hyporheic macroinvertebrate assemblages during supra-seasonal drought. Hydrol Process 23: 2252–2263. [CrossRef] [MathSciNet] [PubMed]
  • Stubbington R, Boulton AJ, Little S, Wood PJ. 2015. Changes in invertebrate assemblage composition in benthic and hyporheic zones during a severe supraseasonal drought. J North Am Benthol Soc 34: 344–354.
  • Tod S, Schmid-Araya JM. 2009. Meiofauna versus macrofauna: Secondary production of invertebrates in a low and chalk stream. Limnol Oceanogr 54: 450–456. [CrossRef] [MathSciNet] [PubMed]
  • Williams DD. 1989. Towards a biological and chemical definition of the hyporheic zone in two Canadian rivers. Freshwater Biol 22: 189–198. [CrossRef]
  • Williams DD, Febria CM, Wong JCY. 2010. Ecotonal and other properties of the Hyporheic Zone. Fund Appl Limnol 176: 349–364. [CrossRef]
  • Wood PJ, Boulton AJ, Little S, Stubbington R. 2010. Is the hyporheic zone a refugium for aquatic macroinvertebrates during severe low flow conditions? Fund Appl Limnol 176: 377–390. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.