Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 417, 2016
Article Number 30
Number of page(s) 9
Published online 05 July 2016
  • Abrahim G.M.S. and Parker P.J., 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediment from Tamaki Estuary Auckland, New Zealand. Environ. Monitor Assess., 136, 227–238. [CrossRef] [PubMed] [Google Scholar]
  • Bajkić S., Naranèić T., Ðokić L., Ðorđević D., Nikodinović-Runić J., Morić I. and Vasiljević B., 2013. Microbial diversity and isolation of multiple metal-tolerant bacteria from surface and underground pits within the copper mining and smelting complex Bor. Arch. Biol. Sci., Belgrade, 65, 375–386. [CrossRef] [Google Scholar]
  • Baudo R., Foudoulakis M., Arapis G., Perdaen K., Lanneau W., Paxinou A.C.M., Kouvdou S. and Persoone G., 2015. History and sensitivity comparison of the Spirodela polyrhiza microbiotest and Lemna toxicity tests. Knowl. Manag. Aquat. Ecosyst., 416, 23, DOI: 10.1051/kmae/2015019. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bouskill N.J., Barker-Finkel J., Galloway T.S., Handy R.D. and Ford T.E., 2010. Temporal bacterial diversity associated with metal-contaminated river sediments. Ecotoxicology, 19, 317–328. [CrossRef] [PubMed] [Google Scholar]
  • Boyd R.S. and Rajakaruna N., 2013. Heavy Metal Tolerance, Ecology – Oxford Bibliographies, 1–24. [Google Scholar]
  • Brankov J., Milijašević D. and Milanovć A., 2012. The assessment of the surface water quality using the water pollution index: a case study of the Timok river (the Danube Rivr Basin), Serbia. Arch. Environ. Protect., 38, 49–61. [CrossRef] [Google Scholar]
  • Bugarin M., Jonović R., Avramović L., Ljubojev M., Stevanović Z. and Marinković V., 2013. Integrated Treatment of Waste Water and Solid Mining Waste. Journal of Technics Technologies Education Management, 8, 423–429. [Google Scholar]
  • Cappucino J.G. and Sherman N., 2008. Nitrification. In Microbiology a Laboratory Manual. International student edition, 7th edition. Addison Wesely Publication, 343–344. [Google Scholar]
  • Chibuike G.U. and Obiora S.C., 2014. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci., ID 752708, 12 p., DOI: 10.1155/2014/752708 [Google Scholar]
  • Choudhary S., Ekramul I., Kazy S.K. and Sar P., 2012. Uranium and other heavy metal resistance and accumulation in bacteria isolated from uranium mine wastes. J. Environ. Sci. Health Part A, 47, 622–637. [CrossRef] [Google Scholar]
  • Clarke K.R., and Gorley R.N., 2001. Primer v5: User manual/Tutorial. Primer-E, Plymouth. [Google Scholar]
  • Domagala Z. and Domka F., 1992. Kinetic model of dissimilatory sulfate reduction. Environ. Prot. Eng., 18, 98. [Google Scholar]
  • Drăgan-Bularda M., 2000. Microbiologie generala. Lucrari practice. Babež-Bolyai University, Cluj-Napoca, 292 p. [Google Scholar]
  • Dragićević S., Novković I., Carević I., Ţivković N. and Tošić R., 2011. Geohazard assessment in the Eastern Serbia. Studii si cercetǎri de geografie si protecþia mediului, 10, 10–19. [Google Scholar]
  • Dunca S., Ailiesei O., Nimitan E. and Stefan M., 2007. Microbiologie aplicata. Demiurg, Iasi, 293 p. [Google Scholar]
  • Giannopoulou I. and Panias D., 2008. Differential precipitation of copper and nickel from acidic polymetallic aqueous solutions. Hydrometallurgy, 90, 137–146. [CrossRef] [Google Scholar]
  • Gillan D.C., Baeyens W., Bechara R., Billon G., Denis K., Grosjean P., Leermakers M., Lesven L., Pede A., Sabbe K. and Gao Y., 2012. Links between bacterial communities in marine sediments and trace metal geochemistry as measured by in situ DET/DGT approaches. Mar. Pollut. Bull., 64, 353–362. [CrossRef] [PubMed] [Google Scholar]
  • Gogartin J.P., Doolittle W.F. and Lawrence J.G., 2002. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol., 19, 2226–2238. [CrossRef] [PubMed] [Google Scholar]
  • Hammer Ø., Harper D.A.T. and Ryan P.D., 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron., 4, 4 p. [Google Scholar]
  • Jin S., Drever JI. and Colberg P.J., 2007. Effects of copper on sulfate reduction in bacterial consortia enriched from metal-contaminated and uncontaminated sediments. Environ. Toxicol. Chem., 26, 225–30. [CrossRef] [PubMed] [Google Scholar]
  • Kostanjšek R., Lapanje A., Drobne D., Perović S., Perović A., Zidar P., Strus J., Hollert H. and Karaman G., 2005. Bacterial community structure analyses to asess pollution of water and sediments in the Lake Shkodra/Skadar, Balkan Peninsula. Environ. Sci. Pollut. Res., 12, 361–368. [CrossRef] [Google Scholar]
  • Kovačević R., Jovašević-Stojanović M., Tasić V., Milošević N., Petrović N., Stanković S. and Matić-Besarabić S., 2010. Preliminary analysis of levels of arsenic and other metalic elements in PM10 sampled near Copper Smelter Bor (Serbia). Chem. Ind. Chem. Eng. Q., 16, 269–279. [CrossRef] [Google Scholar]
  • Lafabrie C., Hlaili A.S., Leboulanger C., Tarhouni I., Othman H.B., Mzoughi N., Chouba L. and Pringault O., 2013. Contaminated sediment resuspension induces shifts in phytoplankton structure and function in a eutrophic Mediterranean lagoon. Knowl. Manag. Aquat. Ecosyst., 410, 05, DOI: 10.1051/kmae/2013060. [CrossRef] [EDP Sciences] [Google Scholar]
  • Li X., Zhu Y., Cavagnaro T.R., Chen M., et al., 2009. Do ammonia-oxidizing archaea respond to soil Cu contamination similarly asammonia-oxidizing bacteria? Plant and Soil, 324, 209–217. [CrossRef] [Google Scholar]
  • Liu Y., Zheng Y., Shen J., Zhang L., He J., 2010. Effects of mercury on the activity and community composition of soil ammonia oxidizers. Environ. Sci. Pollut. Res. Int., 17, 1237–1244. [CrossRef] [PubMed] [Google Scholar]
  • Liu Y., Liu Y., Ding Y., et al., 2014. Abundance, composition and activity of ammonia oxidizer and denitrifier communities in metal polluted rice paddies from South China. PLoS ONE, 9, e102000, DOI: 10.1371/journal.pone.0102000. [CrossRef] [PubMed] [Google Scholar]
  • Magalhães C.M., Machado A., Matos P., Bordalo A.A., 2011. Impact of copper on the diversity, abundance and transcription of nitrite and nitrous oxide reductase genes in an urban European estuary. FEMS Microbiol Ecol., 77, 274–284. [CrossRef] [PubMed] [Google Scholar]
  • Marinković V., Obradović L., Bugarin M. and Stojanović G., 2014. The impact of polluted wastewater on water quality of the Bor river and surrounding groundwater. Min. Metall. Eng. Bor, 3, 33–36. [CrossRef] [Google Scholar]
  • Markwiese J.T. and Colberg P.J., 2000, Bacterial reduction of copper-contaminated ferric oxide: copper toxicity and the interaction between fermentative and iron-reducing bacteria. Arch. Environ. Contam. Toxicol., 38, 139–46. [CrossRef] [PubMed] [Google Scholar]
  • Milijašević D., Milanović A., Brankov J. and Radovanović M., 2011. Water quality assessment of the Borska Reka River using the WPI (water pollution index) method. Arch. Biol. Sci. Belgrade, 63, 819–824. [CrossRef] [Google Scholar]
  • Muller I., Buisson E., Mouronval J.B. and Mesléard F., 2013. Temporary wetland restoration after rice cultivation: is soil transfer required for aquatic plant colonization? Knowl. Manag. Aquat. Ecosyst., 411, 03, DOI: 10.1051/kmae/2013067. [CrossRef] [EDP Sciences] [Google Scholar]
  • Muyzer G. and Stams A.J., 2008. The ecology and biotechnology of Sulfate-reducing bacteria. Nat. Rev. Microbiol., 6, 441–454. [PubMed] [Google Scholar]
  • Nikolić D., Milošević N., Mihajlović I., Živković Ž., Tasić V., Kovačević R. and Petrović N., 2010, Multicriteria analysis of air pollution with SO2 and PM10 in urban area around the copper smelter in Bor, Serbia. Water Air Soil Pollut., 206, 369–383. [CrossRef] [PubMed] [Google Scholar]
  • Obradović L., Bugarin M. and Marinković V., 2012. The effect of mine facilities on pollution the surrounding surface waterways, Min. Metall. Eng. Bor, 4, 191–196. [Google Scholar]
  • Panias D., 2006. Consequences of environmental issues on sustainability of metal industries in Europe: the case study of Bor. Metalurgija, 12, 239–250. [Google Scholar]
  • Petković S., 2009. The trace of roman metallurgy in eastern Serbia. J. Min. Metall., 45, 187–196. [CrossRef] [Google Scholar]
  • Petrovć J., Bugarin N., Bugarin M., Gardć V., Stevanovć Z. and Obradovć L., 2013. Pollution of air, water and soil from industrial products of the exploitation and processing of copper ore in Bor. 17th International Research/Expert Conference Trends in the Development of Machinery and Associated Technology, 277–280. [Google Scholar]
  • Pringault O., Viret H. and Duran R., 2010. Influence of microorganisms on the removal of nickel in tropical marine sediments (New Caledonia). Mar. Pollut. Bull., 61, 530–541. [CrossRef] [PubMed] [Google Scholar]
  • Ruyters S., Mertens J., T’Seyen I., Springael D., Smolders E., 2010, Dynamics of the nitrous oxide reducing community during adaptation to Zn stress in soil. Soil Biol. Biochem., 42, 1581–1587. [CrossRef] [Google Scholar]
  • Sakadevan K., Zheng H. and Bavor H., 1999. Impact of heavy metals on denitrification in surface wetland sediments receiving wastewater. Water Sci. Technol., 40, 349–355. [CrossRef] [Google Scholar]
  • Serbula S.M., Antonijevic M.M., Milosevic N.M., Milic S.M. and Ilic A.A., 2010. Concentrations of particulate matter and arsenic in Bor (Serbia). J. Hazard Mater., 181, 43–51. [CrossRef] [PubMed] [Google Scholar]
  • Serbula S.M., Miljkovic D.D., Kovacevic R.M. and Ilic A.A., 2012. Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicol. Environ. Saf., 76, 209–214. [CrossRef] [PubMed] [Google Scholar]
  • Serbula S.M., Kalinovic T.S., Ilic A.A., Kalinovic J.V. and Steharnik M.M., 2013. Assessment of airborne heavy metal pollution using Pinus spp. and Tilia spp. Aerosol. Air Qual. Res., 13, 563–573. [Google Scholar]
  • Shafie N.A., Aris A.Z., Zakaria M.P., Haris H., Lim W.Y. and Isa N.M., 2013. Application of geoaccumulation index and enrichment factors on the assessment of heavy metal pollution in the sediments. Environ. Sci. Health A, 48, 182–190. [CrossRef] [Google Scholar]
  • Simić S., 2004. Changes in structure of the phytoplankton in the barje reservoir (Serbia). Kragujevac J. Sci., 26, 53–64. [Google Scholar]
  • Sobolev D. and Begonia M.F.T., 2008. Effects of Heavy Metal Contamination upon Soil Microbes: Lead-induced Changes in General and Denitrifying Microbial Communities as Evidenced by Molecular Markers. Int. J. Environ. Res. Public Health, 5, 450–456. [CrossRef] [PubMed] [Google Scholar]
  • Tamaki S. and Frankenberger W.T.Jr., 1992. Environmental biochemistry of arsenic. Rev. Environ. Contam. Toxicol., 124, 79–110. [PubMed] [Google Scholar]
  • Tangahu B.V., Abdullah S.R.S., Basri H., Idris M., Anuar N. and Mukhlisin M., 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng., ID 939161, 31 p., DOI: 10.1155/2011/939161. [Google Scholar]
  • Thiyagarajan V., Tsoi M.M., Zhang W. and Qian P.Y., 2010. Temporal variation of coastal surface sediment bacterial communities along an environmental pollution gradient. Mar. Environ. Res., 70, 56–64. [CrossRef] [PubMed] [Google Scholar]
  • UNESCO/WHO/UNEP, 1996. Water Quality Assessement–A guide to use of biota, sediments, and water in environmental monitoring. University Press, Cambridge. [Google Scholar]
  • Wei G., Fan L., Zhu W., Fu Y., Yu J. and Tang M., 2009. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. J. Hazard. Mater., 162, 50–56. [CrossRef] [PubMed] [Google Scholar]
  • Yisa J., Jacob J.O. and Onoyima C.C., 2012. Assessment of toxic levels of some heavy metals in road deposited sedimentts in Suleja, Nigeria. Am. J. Chem., 2, 34–37. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.