Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 416, 2015
Article Number 29
Number of page(s) 17
Published online 16 November 2015
  • Bady P. and Fruget J.F., 2006. Étude thermique globale du Rhône. Phase 3. Influence de la variabilité hydroclimatique 1985–2004 sur les peuplements de macroinvertébrés. Report Aralep to EDF DTG, 28 p. [Google Scholar]
  • Bij de Vaate A., Jazdzewski K., Ketelaars H.A.M., Gollasch S. and Van der Velde G., 2002. Geographical patterns in range extension of Ponto-caspian macroinvertebrate species in Europe. Can. J. Fish. Aquat. Sci., 59, 1159–1174. [CrossRef] [Google Scholar]
  • Bonada N., Dolédec S. and Statzner B., 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between Mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biol., 13, 1658–1671. [CrossRef] [Google Scholar]
  • Carrel G., 2005. Caractérisation physico-chimique des eaux du Rhône. Évolution des paramètres classiques au cours de la période 1985 – 2004. Report Cemagref Aix-en-Provence to EDF DTG, 16 p. [Google Scholar]
  • Carrel G., Desaint B., Fruget J.F., Khalanski M., Olivier J.M., Poirel A. and Souchon Y., 2006. Étude thermique globale du Rhône – Phase 3. Report Aralep, Université Lyon, Cemagref, EDF. [Google Scholar]
  • Charvet S., Statzner B., Usseglio-Polatera P., and Dumont B., 2000. Traits of benthic macroinvertebrates in semi-natural French streams: an initial application to biomonitoring in Europe. Freshwater Biol., 43, 277–296. [CrossRef] [Google Scholar]
  • Dai A., Qian T., Trenberth K.E. and Milliman J.D., 2009. Changes in continental freshwater discharge from 1948–2004. J. Climate, 22, 2773–2791. [CrossRef] [Google Scholar]
  • Daufresne M., 2008. Impacts des changements climatiques et non climatiques sur les communautés piscicoles de grands fleuves français. Hydroécologie Appliquée 16, 109–134. [CrossRef] [EDP Sciences] [Google Scholar]
  • Daufresne M. and Boët P., 2007. Climate change impacts on structure and diversity of fish communities in rivers. Global Change Biol., 13, 2467–2478. [CrossRef] [Google Scholar]
  • Daufresne M., Roger M.C., Capra H. and Lamouroux N., 2003. Long-term changes within the invertebrate and fish communities of the Upper Rhône River: effects of climatic factors. Global Change Biol., 10, 124–140. [CrossRef] [EDP Sciences] [Google Scholar]
  • Daufresne M., Bady P. and Fruget J.F., 2007. Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhône River. Oecologia, 151, 544–559. [CrossRef] [PubMed] [Google Scholar]
  • Dessaix J., Fruget J.F., Olivier J.M. and Beffy J.L., 1995. Changes of the macroinvertebrate communities in the dammed and by-passed sections of the French Upper Rhône after its regulation. Regulated Rivers, 10, 265–279. [CrossRef] [Google Scholar]
  • Devin S., Bollache L., Noël P.Y. and Beisel J.N., 2005. Patterns of biological invasions in French freshwater systems by non-indigenous macroinvertebrates. Hydrobiologia, 551, 137–146. [CrossRef] [Google Scholar]
  • Dolédec S. and D. Chessel 1994. Co-inertia analysis: an alternative method for studying species-environment relationships. Freshwater Biol., 31, 277–294. [CrossRef] [Google Scholar]
  • Ducrot V., Usseglio-Polatera P., Péry A., Mouthon J., Laffont M., Roger M.-C., Garric J. and Férard J.-F., 2005. Using aquatic macroinvertebrate species traits to build test batteries for sediment toxicity assessment: accounting for the diversity of potential biological responses to toxicants. Environ. Toxicol. Chem., 24, 2306–2315. [CrossRef] [PubMed] [Google Scholar]
  • Dynesius M., & Nilsson C., 1994. Fragmentation and flow regulation of river systems in the northern third of the world. Science, 266, 753–762. [CrossRef] [PubMed] [Google Scholar]
  • Floury M., Usseglio-Polatera P., Ferreol M., Delattre C. and Souchon Y., 2013. Global climate change in large European rivers : long-term effects on macroinvertebrate communities and potential local confounding factors. Global Change Biol., 19, 1085–1099. [CrossRef] [PubMed] [Google Scholar]
  • Fruget J.F., 1992. Ecology of the Lower Rhône following 200 years of human influence: a review. Regulated Rivers, 7, 233–246. [CrossRef] [Google Scholar]
  • Fruget J.F., 2003. Changements environnementaux, dérives écologiques et perspectives de restauration du Rhône Français: bilan de 200 ans d’influences anthropiques. VertigO, 4, 1–17. [Google Scholar]
  • Giuntoli I., Maugis P. and Renard B., 2012. Évolutions observées dans les dénits des rivières en France. Sélection d’un réseau de référence et analyse de l’évolution temporelle des régimes des 40 dernières années. Collection «Comprendre pour agir», Onema, Paris, 8 p. [Google Scholar]
  • Hendricks F., 2001. Impact hydrologique d’un changement climatique sur le bassin du Rhône. Hydroécologie Appliquée, 13, 77–100. [CrossRef] [EDP Sciences] [Google Scholar]
  • IPCC 2013. Climate Change 2013: The Physical Science Basis. Summary for Policymakers. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 29 p. [Google Scholar]
  • Khalaf G. and Tachet H., 1980. Colonization of artificial substrata by macroinvertebrates in a stream and variations accordind to stone size. Freshwater Biol. 10, 475–482. [CrossRef] [Google Scholar]
  • Khalanski M., Carrel G., Desaint B., Fruget J.F., Olivier J.M., Poirel A. and Souchon Y., 2008. Etude thermique globale du Rhône – Impacts hydrobiologiques des échauffements cumulés. Hydroécologie Appliquée, 16, 53–108. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lecerf A., Usseglio-Polatera P, Charcosset J.-Y., Lambrigot D., Bracht B. and Chauvet E., 2006. Assessing functional integrity of eutrophicated streams using direct and indirect approaches: litter breakdown versus macrobenthic assemblage taxonomic and trait structure. Archiv für Hydrobiologie, 165, 105–126. [CrossRef] [Google Scholar]
  • Mouthon J., 2008. Découverte de Sinanodonta woodiana (Lea, 1834) (Bivalvia: Unionacea) dans un réservoir eutrophe: le Grand Large en amont de Lyon (Rhône, France). MalaCo, 5, 241–243. [Google Scholar]
  • Petts G.E., Moller H. and Roux A.L. (eds.), 1989. Historical change of large alluvial rivers: Western Europe. J. Wiley and Sons, Chichester, 355 p. [Google Scholar]
  • Piscart C., Lecerf A., Usseglio-Polatera P., Moreteau J.C. and Beisel J.N., 2005. Biodiversity patterns along a salinity gradient: the case of net-spinning caddisflies. Biodiversity & Conservation, 14, 2235–2249. [CrossRef] [Google Scholar]
  • Piscart C., Usseglio-Polatera P., Moreteau J.C. and Beisel J.N., 2006. The role of salinity in the selection of biological traits of freshwater invertebrates. Archiv für Hydrobiologie, 166, 185–198. [CrossRef] [Google Scholar]
  • Souchon Y., Roger M.C., Villeneuve B. and Piffady J., 2011. Rhône amont. CNPE Bugey. Tendances temporelles de l’hydrologie, de la température et des communautés biologiques de macroinvertébrés et de poisons au cours des trente dernières années (1980−2009). Report CEMAGREF Lyon to EDF R&D, 56 p. [Google Scholar]
  • Southwood T.R.E., 1977. Habitat, the templet for ecological strategies? J. Animal Ecol., 46, 337–365. [Google Scholar]
  • Stahl K., Hisdal H., Hannaford J., Tallaksen L.M., Van Lanen H.J., Sauquet E., Demuth S., Fendekova M. and Jodar J., 2010. Streamflow trends in Europe: evidence from a dataset of near-natiral catchments. Hydrol. Earth Syst. Sci., 14, 2367–2382. [CrossRef] [Google Scholar]
  • Statzner B. and Bêche L., 2010. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biol., 55, 80–119. [CrossRef] [Google Scholar]
  • Statzner B., Hoppenhaus K., Arens M.-F. and Richoux P., 1997. Reproductive traits, habitat use and templet theory: a synthesis of world-wide data on aquatic insects. Freshwater Biol., 38, 109−135. [CrossRef] [Google Scholar]
  • Statzner B., Dolédec S. and Hugueny B., 2004. Biological trait composition of European stream invertebrate communities: assessing the effects of various trait filter types. Ecography, 27, 470–488. [CrossRef] [Google Scholar]
  • Statzner B., Bady P., Dolédec S. and Schöll F., 2005. Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of trait patterns in least impacted river reaches. Freshwater Biol., 50, 2136–2161. [CrossRef] [Google Scholar]
  • Statzner B., Bonada N. and Doledec S., 2008. Biological attributes discriminating invasive from native European stream macroinvertebrates. Biological Invasions, 10, 517–530. [CrossRef] [PubMed] [Google Scholar]
  • Stenseth N.C., Mysterud A., Ottersen G., Hurrell J.W., Chan K.S. and Lima M., 2002. Ecological effects of climate fluctuations. Science, 297, 1292–1296. [CrossRef] [PubMed] [Google Scholar]
  • Tachet H., Richoux P., Bournaud M. and Usseglio-Polatera P., 2000. Invertébrés d’eau douce, Systématique, biologie, écologie, 4th edition. CNRS Eds., Paris, 587 p. [Google Scholar]
  • Tockner K., Pusch M., Borchardt D. and Lorang M.S., 2010. Multiple stressors in coupled river-floodplain ecosystems. Freshwater Biol., 55, 135–151. [CrossRef] [Google Scholar]
  • Townsend C.R. and Hildrew A.G., 1994. Species traits in relation to a habitat templet for rivers systems. Freshwater Biol., 31, 265–275. [CrossRef] [Google Scholar]
  • Townsend C.R., Dolédec, S. and Scarsbrook M., 1997. Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshwater Biol., 37, 367–387. [CrossRef] [Google Scholar]
  • Usseglio-Polatera P., Bournaud M., Richoux P. and Tachet H., 2000. Biological and ecological traits of benthic freshwater macroinvertebrates: relationship and definition of groups with similar traits. Freshwater Biol., 43, 175–205. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.