Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 416, 2015
Article Number 02
Number of page(s) 15
DOI https://doi.org/10.1051/kmae/2014038
Published online 15 January 2015
  • Ács E., Kiss K.T., Szabó K. and Makk J., 2000. Short-term colonization sequence of periphyton on glass slides in a large river River Danube, near Budapest. Arch.Hydrobiol.Suppl. 136, Algol.Stud., 100, 135–156. [Google Scholar]
  • Albay M. and Akçaalan R., 2008. Effects of water quality and hydrologic drivers on periphyton colonization on Sparganium erectum in two Turkish lakes with different mixing regimes. Environ.Monit.Assess., 146, 171–181. [CrossRef] [PubMed] [Google Scholar]
  • Anagnostidis K. and Komárek J., 1985. Modern approach to the classification system ofcyanophytes. 1. Introduction. Algol. Stud. Arch. Hydrobiol. Suppl., 71, 291–302. [Google Scholar]
  • Anagnostidis K. and Komárek J., 1988. Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Algol. Stud. Arch. Hydrobiol. Suppl., 80, 327–472. [Google Scholar]
  • APHA (American Public Health Association), 1992. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC. [Google Scholar]
  • Azim M.E. and Asaeda T., 2005. Periphyton: structure, diversity and colonization. In: Azim M.E., Verdegem M.C.J., van Dam A.A. and Beveridge M.C.M. (eds.), Periphyton: ecology, exploitation and management. CABI Publishing, Wallingford, UK, 15–33. [Google Scholar]
  • Biggs B.J.F., Stevenson R.J. and Lowe R.L., 1998. A habitat matrix conceptual model for stream periphyton. Arch.Hydrobiol., 143, 21–56. [Google Scholar]
  • Borges F.R. and Necchi Jr. O., 2008. Short-term successional dynamics of a macroalgal community in a stream from northwestern São Paulo State, Brazil. Acta Bot.Bras., 22, 453–463. [CrossRef] [Google Scholar]
  • Branco C.C.Z., Branco L.H.Z., Moura M.O. and Bertusso F.R., 2005. The succession dynamics of a macroalgal community after a flood disturbance in a tropical stream from São Paulo State, southeastern Brazil. Revista.Brasil.Bot., 28, 267–275. [Google Scholar]
  • Buczkó K. and Rajczy M., 2001. Changes of attached diatoms in a dead arm of the Danube between 1992–1999 at Ásványráró (Szigetköz section). Studia Bot.Hung., 32, 39–61. [Google Scholar]
  • Clarke K.R. and Warwick R.M., 2001. Change in marine communities: An approach to statistical analysis and interpretation, 2nd ed. PRIMER-E, Plymouth. [Google Scholar]
  • Dunck B., Nogueira I.S. and Felisberto S.A., 2013. Distribution of periphytic algae in wetlands (Palm swamps, Cerrado), Brazil. Braz. J. Biol., 73, 331–346. [Google Scholar]
  • European Water Framework Directive 2000: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. EN Official Journal of the European Communities L327, http://eur-lex.europa.eu, 72. [Google Scholar]
  • Ferreiro N., Giorgi A. and Feijoó C., 2013. Effects of macrophyte architecture and leaf shape complexity on structural parameters of the epiphytic algal community in a Pampean stream. Aquat.Ecol., 47, 389–401. [CrossRef] [Google Scholar]
  • Giorgi A., Feijoó C. and Tell G., 2005. Primary producers in a Pampean stream: temporal variation and structuring role. Biodivers.Conserv., 14, 1699–1718. [CrossRef] [Google Scholar]
  • Gottlieb A.D., Richards J.H. and Gaiser E.E., 2006. Comparative study of periphyton community structure in long and short-hydroperiod Everglades marshes. Hydrobiologia, 569, 195–207. [CrossRef] [Google Scholar]
  • Guiry M.D. and Guiry G.M., 2012. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on October, 2012. [Google Scholar]
  • Hindak F., Cyrus Z., Marvan P., Javornicky P., Komárek J., Etll H., Rosa K., Sladečkova A., Popovsky J., Punčocharova M. and Lhotsky O., 1978. Slatkovodne riasy. Slovenske pedagogicke nakladelstvo, Bratislava. [Google Scholar]
  • Huber-Pestalozzi G., 1962. Das Phytoplankton des Süßwassers. Systematik und Biologie. Teil. 2. E. Schweizerbart’śche Verlagsbuchhandlung (Erwin Nägele), Stuttgart. [Google Scholar]
  • Hustedt F., 1976. Bacillariophyta. Otto Koeltz Science Publishers, Koenigstein. [Google Scholar]
  • Komárek J. and Anagnostidis K., 1989. Modern approach to the classification system of cyanophytes. 4. Nostocales. Algol. Stud. Arch. Hydrobiol. Suppl., 56, 247–345. [Google Scholar]
  • Larned S.T., 2010. A prospectus for periphyton: recent and future ecological research. J. N. Am.Benthol.Soc., 29, 182–206. [CrossRef] [Google Scholar]
  • Lepš J. and Šmilauer P., 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, New York. [Google Scholar]
  • Lorenzen C.J., 1967. Determination of chlorophyll and phaeo-pigments spectrophotometric equations. In: Dykyová D. (ed.), Metody studia ecosystémù, Academia Praha, Praha, 336. [Google Scholar]
  • McCormick P.V., Shuford III R.B.E., Backus J.G. and Kennedy W.C., 1998. Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, USA. Hydrobiologia, 362, 185–208. [CrossRef] [Google Scholar]
  • Mihaljević M. and Stević F., 2011. Cyanobacterial blooms in a temperate river-floodplain ecosystem: the importance of hydrological extremes. Aquat.Ecol., 45, 335–349. [CrossRef] [Google Scholar]
  • Mihaljević M. and Žuna Pfeiffer T., 2012. Colonization of periphyton algae in a temperate floodplain lake under a fluctuating spring hydrological regime. Fundam.Appl.Limnol., 180, 13–25. [Google Scholar]
  • Mihaljević M., Stević F., Horvatić J. and Hackenberger Kutuzović B., 2009. Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia). Hydrobiologia, 618, 77–88. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Mihaljević M., Stević F., Špoljarić D. and Žuna Pfeiffer T., 2014. Spatial pattern of phytoplankton based on the morphology-based functional approach along a river-floodplain gradient. River Res.Appl., DOI: 10.1002/rra.2739. [Google Scholar]
  • Moresco C. and Rodrigues L., 2010. Structure and dynamics of the periphytic algae community of Iraí reservoir, Paraná State, Brazil. Acta Sci.Biol. Sci., 32, 23–30. [Google Scholar]
  • Murakami E.A., Bicudo D.C. and Rodrigues L., 2009. Periphytic algae of the Garças Lake, Upper Paraná River floodplain: comparing the years 1994 and 2004. Braz. J. Biol., 69, 459–468. [CrossRef] [PubMed] [Google Scholar]
  • Pan Y., Hughes R.M., Herlihy A.T. and Kaufmann P.R., 2012. Non-wadeable river bioassessment: spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA. Hydrobiologia, 684, 241–260. [CrossRef] [Google Scholar]
  • Passy S.I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquat. Bot. 86, 171–178. [CrossRef] [Google Scholar]
  • Peterson G.C. and Stevenson R.J., 1992. Resistance and resilience of lotic algal communities: importance of disturbance timing and current. Ecology, 73, 1445–1461. [CrossRef] [Google Scholar]
  • Rimet F. and Bouchez A., 2011. Use of diatom life-forms and ecological guilds to assess pesticide contamination in rivers: Lotic mesocosm approaches. Ecol.Indic., 11, 489–499. [CrossRef] [Google Scholar]
  • Rimet F. and Bouchez A., 2012. Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowl. Managt. Aquatic Ecosyst., 406, 01. [CrossRef] [EDP Sciences] [Google Scholar]
  • Schneck F. and Melo A.S., 2012. Hydrological disturbance intensity overrides substrate roughness effects on the resistance and resilience of stream benthic algae. Freshw.Biol., 57, 1678–1688. [CrossRef] [Google Scholar]
  • Schwarz U., 2005. Landschaftsökologische Charakterisierung des Kopački Rit unter besonderer Berücksichtigung von Flusslandschaftsformen sowie deren Genese und Typologie. Dissertation. University of Wien. [Google Scholar]
  • Shannon C.E. and Weaver W., 1949. The Mathematical Theory of Communication. University Illionis Press, Urbana, USA, 117. [Google Scholar]
  • Stanley E.H., Powers S.M. and Lottig N.R., 2010. The evolving legacy of disturbance in stream ecology: concepts, contributions, and coming challenges. J. N. Am.Benthol.Soc., 29, 67–83. [CrossRef] [Google Scholar]
  • Stenger-Kovács C., Padisák J. and Bíró P., 2006. Temporal variability of Achnanthidium minutissimum (Kützing) Czarnecki and its relationship to chemical and hydrological features of the Torna-stream, Hungary. 6th International Symposium on Use of algae for monitoring rivers. Hungary, Balatonfüred, 133–138. [Google Scholar]
  • Stenger-Kovács C., Lengyel E., Crossetti L.O., Üvegesa V. and Padisák J., 2013. Diatom ecological guilds as indicators of temporally changing stressors and disturbances in the small Torna-stream, Hungary. Ecol. Indic., 24, 138–147. [CrossRef] [Google Scholar]
  • Stevenson R.J., 1996. An introduction to algal ecology in freshwater benthic habitats. In: Stevenson R.J., Bothwell M.L. and Lowe R.L. (eds.), Algal ecology, freshwater benthic ecosystems, Academic Press, San Diego, 3–33. [Google Scholar]
  • Stilinović B. and Plenković-Moraj A., 1995. Bacterial and phytoplanktonic research of Ponikve artificial lake on the island of Krk. Period.Biol., 97, 351–358. [Google Scholar]
  • Strickland J.D.H. and Parsons T.R., 1968. A practical hand-book of seawater analysis. Bull. Fish. Res. Board Can., 167, 1–310. [Google Scholar]
  • Tockner K. and Stanford J.A., 2002. Riverine floodplains: present state and future trends. Environ.Conserv., 29, 308–330. [CrossRef] [Google Scholar]
  • Tockner K., Pusch M., Borchardt D. and Lorang M.S., 2010. Multiple stressors in coupled river-floodplain ecosystems. Freshw.Biol., 55, 135–151. [CrossRef] [Google Scholar]
  • UNESCO, 1966. Determinations of photosynthetic pigments in seawater. Report of SCOR – UNESCO Working Group 17. Monographs on Oceanographic Methodology, Paris, 69. [Google Scholar]
  • van Donk E. and van de Bund W.J., 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot., 72, 261–274. [CrossRef] [Google Scholar]
  • Weitzel R.L., 1979. Periphyton Measurements and Applications. In: Weitzel R.L. (ed.), Methods and measurements of periphyton communities: a review, American society for testing and materials, Baltimore, 3–33. [Google Scholar]
  • Žuna Pfeiffer T., Mihaljević M., Stević F. and Špoljarić D., 2013. Periphytic algae colonization driven by variable environmental components in a temperate floodplain lake. Ann.Limnol. - Int. J . Lim., 49, 179–190. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.