Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 415, 2014
Article Number 01
Number of page(s) 7
DOI https://doi.org/10.1051/kmae/2014025
Published online 11 September 2014
  • Barber J.T., Sharma H.A., Ensley H.E., Polito M.A. and Thomas D.A., 1995. Detoxification of phenol by the aquatic angiosperm, Lemna gibba. Chemosphere, 31, 3567–3574. [CrossRef] [Google Scholar]
  • Caffrey J.M. and Monahan C., 1999. Filamentous algal control using barley straw. Hydrobiologia, 415, 315–318. [CrossRef] [Google Scholar]
  • Catarino L.F., Ferreira M.T. and Moreira I.S., 1997. Preferences of grass carp for macrophytes in Iberian drainage channels. J. Aquat. Plant Manage., 35, 79–83. [Google Scholar]
  • Cheshier J.C., Wersal R.M. and Madsen J.D., 2011. NOTES – The susceptibility of duckweed (Lemna minor L.) to fluridone and penoxsulam. J. Aquat. Plant Manage., 49, 50. [Google Scholar]
  • Chilton II E.W. and Muoneke M.I., 1992. Biology and management of grass carp (Ctenopharyngodon idella, Cyprinidae) for vegetation control: a North American perspective. Rev. Fish Biol. Fish., 2, 283–320. [CrossRef] [Google Scholar]
  • Cooke G.D., Welch E.B., Peterson S. and Nichols S.A., 2005. Restoration and management of lakes and reservoirs. CRC Press, Boca Raton, 575 p. [Google Scholar]
  • Day J.A. and Saunders F.M., 2004. Glycosidation of chlorophenols by Lemna minor. Environ. Toxicol. Chem., 23, 613–620. [CrossRef] [PubMed] [Google Scholar]
  • De Tezanos Pinto P., Allende L. and O’Farrell I., 2007. Influence of free-floating plants on the structure of a natural phytoplankton assemblage: an experimental approach. J. Plankton Res., 29, 47–56. [CrossRef] [Google Scholar]
  • Dojlido J., Dożańska W., Hermanowicz W., Koziorowski B. and Zerbe J., 1999. Fizyczno-chemiczne badanie wody i ścieków [Physico-chemical examination of water and wastewater], Arkady, Warszawa, 566 p. (in Polish) [Google Scholar]
  • Everall N.C. and Lees D.R., 1997. The identification and significance of chemicals released from decomposing barley straw during reservoir algal control. Water Res., 31, 614–620. [Google Scholar]
  • Frick H., 1994. Heterotrophy in the Lemnaceae. J. Plant Physiol., 144, 189–193. [CrossRef] [Google Scholar]
  • Gorham P.R., 1950. Heterotrophic nutrition of seed plants with particular reference to Lemna minor L.. Can. J. Res., 28, 356–381. [CrossRef] [Google Scholar]
  • Hussner A., 2012. Alien aquatic plant species in European countries. Weed Res., 52, 297–306. [CrossRef] [Google Scholar]
  • Iberite M., Iamonico D., Abati S. and Abbate G., 2011. Lemna valdiviana Phil. (Araceae) as a potential invasive species in Italy and Europe: Taxonomic study and first observations on its ecology and distribution. Plant Biosyst., 145, 751–757. [CrossRef] [Google Scholar]
  • Janes R., Eaton J. and Hardwick K., 1996. The effects of floating mats of Azolla filiculoides Lam. and Lemna minuta Kunth on the growth of submerged macrophytes. Hydrobiologia, 340, 23–26. [CrossRef] [Google Scholar]
  • Janse J.H. and Van Puijenbroek P.J.T.M., 1998. Effects of eutrophication in drainage ditches. Environ. Poll., 102, 547–552. [CrossRef] [Google Scholar]
  • Killgore K.J. and Hoover J.J., 2001. Effects of hypoxia on fish assemblages in a vegetated waterbody. J. Aquat. Plant Manage., 39, 40–44. [Google Scholar]
  • Kremer R.J. and Ben-Hammouda M., 2009. Allelopathic Plants. 19. Barley (Hordeum vulgare L). Allelopathy J., 24, 225–242. [Google Scholar]
  • Landolt E., 1986. The family of Lemnaceae – a monographic study, vol. 1. Biosystematic investigations in the family of duckweeds (Lemnaceae). Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel, Zürich, 566 p. [Google Scholar]
  • Langeland K.A., Hill O.N., Koschnick T.J. and Haller W.T., 2002. Evaluation of a new formulation of Reward landscape and aquatic herbicide for control of duckweed, waterhyacinth, waterlettuce, and hydrilla. J. Aquat. Plant Manage., 40, 51–53. [Google Scholar]
  • Lewis W.M. and Bender M., 1961. Effect of a cover of duckweeds and the alga Pithophora upon the dissolved oxygen and free carbon dioxide of small ponds. Ecology, 42, 602–603. [CrossRef] [Google Scholar]
  • Mkandawire M. and Dudel E.G., 2007. Are Lemna spp. effective phytoremediation agents. Bioremediation, Biodiversity and Bioavailability, 1, 56–71. [Google Scholar]
  • Murray D., Jefferson B., Jarvis P. and Parsons S.A., 2010. Inhibition of three algae species using chemicals released from barley straw. Environ. Technol., 31, 455–466. [CrossRef] [PubMed] [Google Scholar]
  • Njambuya J., Stiers I. and Triest L., 2011. Competition between Lemna minuta and Lemna minor at different nutrient concentrations. Aquat. Bot., 94, 158–164. [CrossRef] [Google Scholar]
  • Ó hUallacháin D. and Fenton O., 2008. Artificial lake amelioration: implications for submerged aquatic vegetation. In: Proceedings of Environ, Dundalk, Rep. of Ireland, 92. [Google Scholar]
  • Ó hUallacháin D. and Fenton O., 2010. Barley (Hordeum vulgare)-induced growth inhibition of algae: a review. J. Appl. Phycol., 22, 651–658. [CrossRef] [Google Scholar]
  • Parr L., Perkins R. and Mason C., 2002. Reduction in photosynthetic efficiency of Cladophora glomerata, induced by overlying canopies of Lemna spp. Water Res., 36, 1735–1742. [CrossRef] [PubMed] [Google Scholar]
  • Pasztaleniec A. and Poniewozik M., 2013. The impact of free-floating plant cover on phytoplankton assemblages of oxbow lakes (The Bug River Valley, Poland). Biologia, 68, 18–29. [CrossRef] [Google Scholar]
  • Pęczuła W., 2013. Influence of barley straw (Hordeum vulgare L.) extract on phytoplankton dominated byScenedesmus species in laboratory conditions: the importance of the extraction duration. J. Appl. Phycol., 25, 661–665. [CrossRef] [PubMed] [Google Scholar]
  • Pęczuła W. and Banach B., 2013. Small water bodies and lakes protected under EU Habitat Directive – results of the pilot wildlife monitoring in the Lublin Region. TEKA Komisji Ochrony i Kształtowania Środowiska Przyrodniczego, 10, 306–317. [Google Scholar]
  • Pillinger J.M., Cooper J.A., Ridges I. and Barrett P.R.F., 1992. Barley straw as an inhibitor of algal growth III: the role of fungal decomposition. J. Appl. Phycol., 4, 353–355. [CrossRef] [Google Scholar]
  • Pillinger J.M., Cooper J.A. and Ridge I., 1994. Role of phenolic compounds in the antialgal activity of barley straw. J. Chem. Ecol., 20, 1557–1569. [CrossRef] [PubMed] [Google Scholar]
  • Pipalova I., 2006. A review of grass carp use for aquatic weed control and its impact on water bodies. J. Aquat. Plant Manage., 44, 1–12. [Google Scholar]
  • Pokorný J. and Rejmánková E., 1983. Oxygen regime in a fishpond with duckweeds (Lemnaceae) and Ceratophyllum. Aquat. Bot., 17, 125–137. [CrossRef] [Google Scholar]
  • Reid M.S. and Bieleski R.L., 1970. Response of Spirodela oligorrhiza to phosphorus deficiency. Plant Physiol., 46, 609–613. [CrossRef] [PubMed] [Google Scholar]
  • Roijackers R., Szabo S. and Scheffer M., 2004. Experimental analysis of the competition between algae and duckweed. Arch. Hydrobiol., 160, 401–412. [CrossRef] [Google Scholar]
  • Scheffer M. and van Nes E., 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia, 584, 455–466. [CrossRef] [Google Scholar]
  • Sutton D.L. and Portier K.M., 1989. Influence of allelochemicals and aqueous plant extracts on growth of duckweed. J. Aquat. Plant Manage., 27, 90–95. [Google Scholar]
  • Toro G.R., Leather G.R. and Einhellig F.A., 1988. Effects of three phenolic compounds on Lemna gibba G3. J. Chem. Ecol., 14, 845–853. [CrossRef] [PubMed] [Google Scholar]
  • Waybright T.J., Terlizzi D.E. and Ferrier M.D., 2009. Chemical characterization of the aqueous algistatic fraction of barley straw (Hordeum vulgare) inhibiting Microcystis aeruginosa. J. Appl. Phycol., 21, 333–340. [CrossRef] [Google Scholar]
  • Wersal R.M. and Madsen J.D., 2009. Combinations of diquat and a methylated seed oil surfactant for control of common duckweed and watermeal. J. Aquat. Plant Manage., 47, 59–62. [Google Scholar]
  • Yamaga F., Washio K. and Morikawa M., 2010. Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environ. Sci. Technol., 44, 6470–6474. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.