Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 415, 2014
Article Number 01
Number of page(s) 7
DOI https://doi.org/10.1051/kmae/2014025
Published online 11 September 2014
  • Barber J.T., Sharma H.A., Ensley H.E., Polito M.A. and Thomas D.A., 1995. Detoxification of phenol by the aquatic angiosperm, Lemna gibba. Chemosphere, 31, 3567–3574. [CrossRef]
  • Caffrey J.M. and Monahan C., 1999. Filamentous algal control using barley straw. Hydrobiologia, 415, 315–318. [CrossRef]
  • Catarino L.F., Ferreira M.T. and Moreira I.S., 1997. Preferences of grass carp for macrophytes in Iberian drainage channels. J. Aquat. Plant Manage., 35, 79–83.
  • Cheshier J.C., Wersal R.M. and Madsen J.D., 2011. NOTES – The susceptibility of duckweed (Lemna minor L.) to fluridone and penoxsulam. J. Aquat. Plant Manage., 49, 50.
  • Chilton II E.W. and Muoneke M.I., 1992. Biology and management of grass carp (Ctenopharyngodon idella, Cyprinidae) for vegetation control: a North American perspective. Rev. Fish Biol. Fish., 2, 283–320. [CrossRef]
  • Cooke G.D., Welch E.B., Peterson S. and Nichols S.A., 2005. Restoration and management of lakes and reservoirs. CRC Press, Boca Raton, 575 p.
  • Day J.A. and Saunders F.M., 2004. Glycosidation of chlorophenols by Lemna minor. Environ. Toxicol. Chem., 23, 613–620. [CrossRef] [PubMed]
  • De Tezanos Pinto P., Allende L. and O’Farrell I., 2007. Influence of free-floating plants on the structure of a natural phytoplankton assemblage: an experimental approach. J. Plankton Res., 29, 47–56. [CrossRef]
  • Dojlido J., Dożańska W., Hermanowicz W., Koziorowski B. and Zerbe J., 1999. Fizyczno-chemiczne badanie wody i ścieków [Physico-chemical examination of water and wastewater], Arkady, Warszawa, 566 p. (in Polish)
  • Everall N.C. and Lees D.R., 1997. The identification and significance of chemicals released from decomposing barley straw during reservoir algal control. Water Res., 31, 614–620. [CrossRef]
  • Frick H., 1994. Heterotrophy in the Lemnaceae. J. Plant Physiol., 144, 189–193. [CrossRef]
  • Gorham P.R., 1950. Heterotrophic nutrition of seed plants with particular reference to Lemna minor L.. Can. J. Res., 28, 356–381. [CrossRef]
  • Hussner A., 2012. Alien aquatic plant species in European countries. Weed Res., 52, 297–306. [CrossRef]
  • Iberite M., Iamonico D., Abati S. and Abbate G., 2011. Lemna valdiviana Phil. (Araceae) as a potential invasive species in Italy and Europe: Taxonomic study and first observations on its ecology and distribution. Plant Biosyst., 145, 751–757. [CrossRef]
  • Janes R., Eaton J. and Hardwick K., 1996. The effects of floating mats of Azolla filiculoides Lam. and Lemna minuta Kunth on the growth of submerged macrophytes. Hydrobiologia, 340, 23–26. [CrossRef]
  • Janse J.H. and Van Puijenbroek P.J.T.M., 1998. Effects of eutrophication in drainage ditches. Environ. Poll., 102, 547–552. [CrossRef]
  • Killgore K.J. and Hoover J.J., 2001. Effects of hypoxia on fish assemblages in a vegetated waterbody. J. Aquat. Plant Manage., 39, 40–44.
  • Kremer R.J. and Ben-Hammouda M., 2009. Allelopathic Plants. 19. Barley (Hordeum vulgare L). Allelopathy J., 24, 225–242.
  • Landolt E., 1986. The family of Lemnaceae – a monographic study, vol. 1. Biosystematic investigations in the family of duckweeds (Lemnaceae). Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel, Zürich, 566 p.
  • Langeland K.A., Hill O.N., Koschnick T.J. and Haller W.T., 2002. Evaluation of a new formulation of Reward landscape and aquatic herbicide for control of duckweed, waterhyacinth, waterlettuce, and hydrilla. J. Aquat. Plant Manage., 40, 51–53.
  • Lewis W.M. and Bender M., 1961. Effect of a cover of duckweeds and the alga Pithophora upon the dissolved oxygen and free carbon dioxide of small ponds. Ecology, 42, 602–603. [CrossRef]
  • Mkandawire M. and Dudel E.G., 2007. Are Lemna spp. effective phytoremediation agents. Bioremediation, Biodiversity and Bioavailability, 1, 56–71.
  • Murray D., Jefferson B., Jarvis P. and Parsons S.A., 2010. Inhibition of three algae species using chemicals released from barley straw. Environ. Technol., 31, 455–466. [CrossRef] [PubMed]
  • Njambuya J., Stiers I. and Triest L., 2011. Competition between Lemna minuta and Lemna minor at different nutrient concentrations. Aquat. Bot., 94, 158–164. [CrossRef]
  • Ó hUallacháin D. and Fenton O., 2008. Artificial lake amelioration: implications for submerged aquatic vegetation. In: Proceedings of Environ, Dundalk, Rep. of Ireland, 92.
  • Ó hUallacháin D. and Fenton O., 2010. Barley (Hordeum vulgare)-induced growth inhibition of algae: a review. J. Appl. Phycol., 22, 651–658. [CrossRef]
  • Parr L., Perkins R. and Mason C., 2002. Reduction in photosynthetic efficiency of Cladophora glomerata, induced by overlying canopies of Lemna spp. Water Res., 36, 1735–1742. [CrossRef] [PubMed]
  • Pasztaleniec A. and Poniewozik M., 2013. The impact of free-floating plant cover on phytoplankton assemblages of oxbow lakes (The Bug River Valley, Poland). Biologia, 68, 18–29. [CrossRef]
  • Pęczuła W., 2013. Influence of barley straw (Hordeum vulgare L.) extract on phytoplankton dominated byScenedesmus species in laboratory conditions: the importance of the extraction duration. J. Appl. Phycol., 25, 661–665. [CrossRef] [PubMed]
  • Pęczuła W. and Banach B., 2013. Small water bodies and lakes protected under EU Habitat Directive – results of the pilot wildlife monitoring in the Lublin Region. TEKA Komisji Ochrony i Kształtowania Środowiska Przyrodniczego, 10, 306–317.
  • Pillinger J.M., Cooper J.A., Ridges I. and Barrett P.R.F., 1992. Barley straw as an inhibitor of algal growth III: the role of fungal decomposition. J. Appl. Phycol., 4, 353–355. [CrossRef]
  • Pillinger J.M., Cooper J.A. and Ridge I., 1994. Role of phenolic compounds in the antialgal activity of barley straw. J. Chem. Ecol., 20, 1557–1569. [CrossRef] [PubMed]
  • Pipalova I., 2006. A review of grass carp use for aquatic weed control and its impact on water bodies. J. Aquat. Plant Manage., 44, 1–12.
  • Pokorný J. and Rejmánková E., 1983. Oxygen regime in a fishpond with duckweeds (Lemnaceae) and Ceratophyllum. Aquat. Bot., 17, 125–137. [CrossRef]
  • Reid M.S. and Bieleski R.L., 1970. Response of Spirodela oligorrhiza to phosphorus deficiency. Plant Physiol., 46, 609–613. [CrossRef] [PubMed]
  • Roijackers R., Szabo S. and Scheffer M., 2004. Experimental analysis of the competition between algae and duckweed. Arch. Hydrobiol., 160, 401–412. [CrossRef]
  • Scheffer M. and van Nes E., 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia, 584, 455–466. [CrossRef]
  • Sutton D.L. and Portier K.M., 1989. Influence of allelochemicals and aqueous plant extracts on growth of duckweed. J. Aquat. Plant Manage., 27, 90–95.
  • Toro G.R., Leather G.R. and Einhellig F.A., 1988. Effects of three phenolic compounds on Lemna gibba G3. J. Chem. Ecol., 14, 845–853. [CrossRef] [PubMed]
  • Waybright T.J., Terlizzi D.E. and Ferrier M.D., 2009. Chemical characterization of the aqueous algistatic fraction of barley straw (Hordeum vulgare) inhibiting Microcystis aeruginosa. J. Appl. Phycol., 21, 333–340. [CrossRef]
  • Wersal R.M. and Madsen J.D., 2009. Combinations of diquat and a methylated seed oil surfactant for control of common duckweed and watermeal. J. Aquat. Plant Manage., 47, 59–62.
  • Yamaga F., Washio K. and Morikawa M., 2010. Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environ. Sci. Technol., 44, 6470–6474. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.