Issue
Knowl. Managt. Aquatic Ecosyst.
Number 413, 2014
Topical issue on Crayfish
Article Number 04
Number of page(s) 12
DOI https://doi.org/10.1051/kmae/2014005
Published online 14 March 2014
  • Alderman D.J. and Polglase J.L., 1988. Pathogens, parasites and commensals. In: Holdich D.M. and Lowery R.S. (eds.), Freshwater Crayfish: Biology. Management and Exploitation, Croom Helm, London, 167–212. [Google Scholar]
  • Anonymous, 2005. The Law of Nature Conservation. Zakon o zaštiti prirode. Narodne novine, NN 70/05 (in Croatian). [Google Scholar]
  • Anonymous, 2008. Act on Amendments to the Law of Nature Conservation. Zakon o izmjenama i dopunama Zakona o zaštiti prirode. Narodne novine, NN 139/08 (in Croatian). [Google Scholar]
  • Anonymous, 2009. Ordinance on the proclamation of protected and strictly protected wild taxa. Pravilnik o proglašavanju divljih svojti zaštićenim i strogo zaštićenim. Narodne novine, NN 99/09 (in Croatian). [Google Scholar]
  • Austin B. and Austin D., 1999. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish. Austin B. and Austin D. (eds), Springer-Praxis, Chichester, UK, p. 453. [Google Scholar]
  • Austin D.A., Robertson P.A.W. and Austin B., 2003. Recovery of a new biogroup of Yersinia ruckeri from diseased rainbow trout (Oncorhynchus mykiss, Walbaum). Syst. Appl. Microbiol., 26, 127–131. [CrossRef] [PubMed] [Google Scholar]
  • Bastardo A., Ravelo C. and Romalde J.L., 2012. A polyphasic approach to study the intraspecific diversity of Yersinia ruckeri strains isolated from recent outbreaks in salmonid culture. Vet. Microbiol., 160, 176–182. [CrossRef] [PubMed] [Google Scholar]
  • Benagli C., Demarta A., Caminada A.P., Ziegler D., Petrini O. and Tonolla M., 2012. A rapid MALDI-TOF MS identification database at genospecific level for clinical and environmental Aeromonas strains. PLoS One, 7, 10, 1–6. [CrossRef] [PubMed] [Google Scholar]
  • Bizzini A., Durussel C., Bille J., Greub G. and Prod’hom G., 2010. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a Clinical Microbiology Laboratory. J. Clin. Microbiol., 48, 5, 1549–1554. [CrossRef] [PubMed] [Google Scholar]
  • Böhme K., Fernández-No I.C., Pazos M., Gallardo J.M., Barros-Velázquez J., Cañas B. and Calo-Mata P., 2013. Identification and classification of seafood-borne pathogenic and spoilage bacteria: 16S rRNA sequencing versus MALDI-TOF MS fingerprinting. Electrophoresis, 34, 6, 877–887. [CrossRef] [PubMed] [Google Scholar]
  • Brown B.J. and Leff L.G., 1996. Comparison of identification of aquatic bacteria using fatty acid methylester analysis and API20E and NFT strips. Appl. Environ. Microbiol., 62, 2183–2185. [PubMed] [Google Scholar]
  • Calderaro A., Piccolo G., Montecchini S., Buttrini M., Gorrini C., Rossi S., Arcangeletti M.C., De Conto F., Medici M.C. and Chezzi C., 2013. MALDI-TOF MS analysis of human and animal Brachyspira species and benefits of database extension. J. Proteomics, 78, 273–280. [CrossRef] [PubMed] [Google Scholar]
  • Campos Braga P., Tata A., Goncalves dos Santos V., Barreiro J.R., Vilczaki Schwab N., Veiga dos Santos M., Nogueira Eberlin M. and Ramires Ferreira C., 2013. Bacterial identification: from the agar plate to the mass spectrometer. RSC Adv., 3, 994–1008. [CrossRef] [Google Scholar]
  • Colwell R.R., Wicks T.C., Tubiash H.S., 1975. A comparative study of the bacterial flora of the hemolymph of Callinectes sapidus. Mar. Fish. Rev., 37, 29–33. [Google Scholar]
  • Cooper A., Layton R., Owens L., Ketheesan N. and Govan B., 2007. Evidence for the classification of a crayfish pathogen as a member of the genus Coxiella. Lett. Appl. Microbiol., 45, 558–563. [CrossRef] [PubMed] [Google Scholar]
  • Diéguez-Uribeondo J., 2006. Pathogens, parasites ectocemmensals. In: Souty-Grosset C., Holdich D.M., Nöel P., Reynolds J.D. and Haffner P. (eds.), Atlas of crayfish in Europe, Museum National d’Histoire Naturelle, Paris, France, 133–149. [Google Scholar]
  • Dupont C., Sivadon-Tardy V., Bille E., Daupin B., Beretti L., Alvarez A.S., Degand N., Ferroni A., Rottman M., Herrmann J.L., Nassif X., Ronco E. and Carbonnelle E., 2010. Identification of clinical coagulase-negative staphylococci, isolated in microbiology laboratories, by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and two automated systems. Clin. Microbiol. Infect., 16, 998–1004. [CrossRef] [PubMed] [Google Scholar]
  • Edgerton B.F. and Owens L., 1999. Histopathological surveys of the redclaw freshwater crayfish, Cherax quadricarinatus, in Australia. Aquaculture, 180, 23–40. [CrossRef] [Google Scholar]
  • Edgerton B.F., Evans L.H.Stephens F.J. and Overstreet R.M., 2002. Synopsis of freshwater crayfish diseases and commensal organisms. Aquaculture, 206, 57–135. [CrossRef] [Google Scholar]
  • Edsman L., Füreder L., Gherardi F. and Souty-Grosset C. 2010. Astacus astacus. In: IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4. www.iucnredlist.org. Downloaded on 19 January 2011. [Google Scholar]
  • El-Bouri K., Johnston S., Rees E., Thomas I., Bome-Mannathoko N., Jones C., Reid M., Ben-Ismaeil B., Davies A.P., Harris L.G. and Mack D., 2012. Comparison of bacterial identification by MALDI-TOF mass spectrometry and conventional diagnostic microbiology methods: Agreement, speed and cost implications. Br. J. Biomed. Sci., 69, 47–55. [PubMed] [Google Scholar]
  • Esteve C., Alcaide E., Blasco M.D., 2012. Aeromonas hydrophila subsp. dhakensis isolated from feces, water and fish in Mediterranean Spain. Microbes Environ., 27, 367–373. [CrossRef] [PubMed] [Google Scholar]
  • Ford B.A. and Burnham C-A.D., 2013. Optimization of routine identification of clinically relevant gram-negative bacteria by use of matrix-assisted laser desorption-time of flight mass spectrometry and the Bruker Biotyper. J. Clin. Microbiol., 51, 1412–1420. [CrossRef] [PubMed] [Google Scholar]
  • Holdich D.M., Haffner P. and Nöel P., 2006. Species files. In: Souty-Grosset C., Holdich D.M., Nöel P., Reynolds J.D. and Haffner P. (eds.), Atlas of crayfish in Europe, Museum National d’Histoire Naturelle, Paris, France, 49–131. [Google Scholar]
  • Jamal W.Y., Shanin M. and Rotimi V.O., 2013. Comparison of two matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry methods and API 20AN for identification of clinically relevant anaerobic bacteria. J. Med. Microbiol., 62, 540–544. [CrossRef] [PubMed] [Google Scholar]
  • Jiravanichpaisal P., Roos S., Edsman L., Liu H. and Söderhäll K., 2009. A highly virulent pathogen, Aeromonas hydrophila, from the freshwater crayfish Pacifastacus leniusculus. J. Invertebr. Pathol., 101, 56–66. [CrossRef] [PubMed] [Google Scholar]
  • Johnson P.T., 1976. Bacterial infection in the blue crab, Callinectes sapidus: course of infection and histopathology. J. Invertebr. Pathol., 28, 25–36. [CrossRef] [Google Scholar]
  • Johnson P.T.J. and Paull S.H., 2011. The ecology and emergence of diseases in fresh waters. Freshw. Biol., 56, 638–657. [CrossRef] [Google Scholar]
  • Kierzkowska M., Majwska A., Kuthan R.T., Sawicka-Grzelak A. and Mynarczyk M., 2013. A comparison of Api 20A vs MALDI-TOF MS for routine identification of clinically significant anaerobic bacterial strains to the species level. J. Microbiol. Meth., 92, 209–212. [CrossRef] [Google Scholar]
  • Kok J., Chen S.C.A., Dwyer D.E. and Iredell J.R., 2013. Current status of matrix-assisted laser desorption ionization-time of flight mass spectrometry in the clinical microbiology laboratory. Pathology, 45, 4–17. [CrossRef] [PubMed] [Google Scholar]
  • Lamy B., Kodjo A. and Laurent F., 2011. Identification of Aeromonas isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Diag. Microbiol. Infect. Dis., 71, 1–5. [CrossRef] [Google Scholar]
  • Longshaw M., 2011. Diseases of crayfish: A review. J. Invertebr. Pathol., 106, 54–70. [CrossRef] [PubMed] [Google Scholar]
  • Longshaw M., Bateman K.S., Stebbing P., Stentiford G.D. and Hockley F.A., 2012. Disease risks associated with the importation and release of non-native crayfish species into mainland Britain. Aquatic Biol., 16, 1–15. [CrossRef] [Google Scholar]
  • Madetoja M. and Jussila J., 1996. Gram negative bacteria in the hemolymph of noble crayfish Astacus astacus, in an intensive crayfish culture system. Nord. J. Freshwater Res., 72, 88–90. [Google Scholar]
  • Maguire I. and Gottstein-Matočec S., 2004. The distribution pattern of freshwater crayfish in Croatia. Crustaceana, 77, 25–47. [CrossRef] [Google Scholar]
  • Maguire I., Jelić M. and Klobučar G., 2011. Update on the distribution of freshwater crayfish in Croatia. Knowl. Managt. Aquatic Ecosyst. 401, Doi: 10.1051/kmae/2011051. [Google Scholar]
  • Makkonen J., 2013. The crayfish plague pathogen Aphanomyces astaci – Genetic diversity and adaptation to the host species. PhD thesis, University of Eastern Finland, p. 67. [Google Scholar]
  • Martino M.E., Fasolato L., Montemurro F., Rosteghin M., Manfrin A, Patarnello T., Novelli E. and Cardazz B., 2011. Determination of microbial diversity of Aeromonas strains on the basis of multilocus sequence typing, phenotype, and presence of putative virulence gene. Appl. Environ. Microbiol., 77, 4986–5000. [CrossRef] [PubMed] [Google Scholar]
  • Martiny D., Dediste A., Debruyne L., Vlaes L., Haddou N.B., Vandamme P. and Vandenberg O., 2011. Accuracy of the API Campy system, the Vitek 2 Neisseria-Haemophilus card and matrix-assisted laser desorption ionization-time of flight mass spectrometry for the identification of Campylobacter and related organisms. Clin. Microbiol. Infect., 17, 1001–1006. [CrossRef] [PubMed] [Google Scholar]
  • Mellmann A., Bimet F., Bizet C., Borovskaya A.D., Drake R.R., Eigner U., Fahr A.M., He Y., Ilina E.N., Kostrzewa M., Maier T., Mancinelli L., Moussaoui W., Prévost G., Putignani L., Seachord C.L., Tang Y.W. and Harmsen D., 2009. High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J. Clin. Microbiol., 47, 3732–3734. [CrossRef] [PubMed] [Google Scholar]
  • Mickeniene L. and Šyvokiene J., 2011. The study of bacteria on artificially incubated noble crayfish eggs. Inland Water Biol., 4, 137–142. [CrossRef] [Google Scholar]
  • Nagy E., Becker S., Kostrzewa M., Barta N. and Urban E., 2012. The value of MALDI-TOF MS for the identification of clinically relevant anaerobic bacteria in routine laboratories. J. Med. Microbiol., 61, 1393–1400. [CrossRef] [PubMed] [Google Scholar]
  • Petersen C.E., Valentine N.B. and Wahl K.L., 2009. Characterization of microorganisms by MALDI mass spectrometry. Methods in molecular biology. Clifton, New Jersey, 492 p. [Google Scholar]
  • Quaglio F., Morolli C., Galuppi R., Tampieri M.P., Bonoli C., Marcer F., Rotundo G. and Germinara G.S., 2006a. Sanitary-pathological examination of red swamp crayfish (Procambarus clarkii, Girard 1852) in the Reno Valley. Freshwater Crayfish, 15, 1–10. [Google Scholar]
  • Quaglio F., Morolli C., Galuppi R., Bonoli C., Marcer F., Nobile L, DeLuise G. and Tampieri M.P., 2006b. Preliminary investigations of disease-causing organisms in the white-clawed crayfish Austropotamobius pallipes complex from streams of Northern Italy. Bull. Fr. Pêche Piscic., 380−381, 1271–1290. [Google Scholar]
  • Risch M., Rađjenović D., NamHan J., Wydler M., Nydegger U. and Risch L., 2010. Comparison of MALDI TOF with conventional identification of clinically relevant bacteria. Swiss Med. Wkly., 140, 1–5. [Google Scholar]
  • Romero X. and Jiménez, R., 2002. Histopathological survey of diseases and pathogens present in redclaw crayfish, Cherax quadricarinatus (Von Martens), cultured in Ecuador. J. Fish Dis., 25, 653–667. [CrossRef] [Google Scholar]
  • Saffert R.T., Cunningham S.A., Ihde S.M., Monon Jobe K.E., Mandrekar J. and Patel R., 2011. Comparison of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry to BD Phoenix automated microbiology system for identification of Gram-negative bacilli. J. Clin. Microbiol., 49, 887–892. [CrossRef] [PubMed] [Google Scholar]
  • Sanjuán E., Fouz B., Oliver J.D. and Amaro C., 2009. Evaluation of genotypic and phenotypic methods to distinguish clinical from environmental Vibrio vulnificus strains. Appl. Environ. Microbiol., 75, 1604–1613. [CrossRef] [PubMed] [Google Scholar]
  • Scott J.R. and Thune R.L., 1986. Bacterial flora of hemolymph from red swamp crawfish, Procambarus clarkii (Girard), from commercial ponds. Aquaculture, 58, 161–165. [CrossRef] [Google Scholar]
  • Seng P., Drancourt M., Gouriet F., La S.B., Founier P.E., Rolain J.M. et al., 2009. Ongoing revolution in bacteriology : routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Clin. Infect. Dis., 49, 543–551. [CrossRef] [PubMed] [Google Scholar]
  • Smith V.J. and Söderhäll K., 1986. Crayfish pathology: an overview. Freshwater Crayfish, 6, 199–211. [Google Scholar]
  • Soto E., Griffin M., Arauz M., Riofrio A., Martinez A. and Cabrejoh M.E., 2012. Edwardsiella ictaluri as the causative agent of mortality in cultured Nile tilapia. J. Aquat. Anim. Health, 24, 81–90. [CrossRef] [PubMed] [Google Scholar]
  • Topić Popović N., Čož-Rakovac R., Strunjak-Perović I., 2007. Commercial phenotypic tests (API 20E) in diagnosis of fish bacteria. Vet. Med. Czech, 52, 49–53. [Google Scholar]
  • van Veen S.Q., Claas E.C.J. and Kuijper E.J., 2010. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J. Clin. Microbiol., 48, 900–907. [CrossRef] [PubMed] [Google Scholar]
  • Vey A., 1986. Disease problems during aquaculture of freshwater crayfish. Freshwater Crayfish, 6, 212−222. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.