Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 411, 2013
Article Number 13
Number of page(s) 16
Published online 07 November 2013
  • Allen M.S., Hoyer M.V. and Canfield D.E., Jr., 2000. Factors related to gizzard shad and threadfin shad occurrence and abundance in Florida lakes. J. Fish Biol., 57, 291–302. [Google Scholar]
  • Bachmann R.W., Jones B.L., Fox D.D., Hoyer M., Bull L.A. and Canfield D.E., Jr., 1996. Relations between trophic state indicators and fish in Florida (USA) lakes. Can. J. Fish. Aquat. Sci., 53, 842–855. [CrossRef] [Google Scholar]
  • Brabrand Å., Faafeng B.A. and Nilssen J.P.M., 1990. Relative importance of phosphorus supply to phytoplankton production: fish excretion versus external loading. Can. J. Fish. Aquat. Sci., 47, 364–372. [Google Scholar]
  • Carpenter S.R., Kitchell J.F., Hodgson J.R., Cochran P.A., Elser J.J., Elser M.M., Lodge D.M., Kretchmer D. and He X., 1987. Regulation of lake primary productivity by food web structure. Ecology, 68, 1863–1876. [CrossRef] [PubMed] [Google Scholar]
  • Catalano M.J. and Allen M.S., 2011a. A whole-lake density reduction to assess compensatory responses of gizzard shad Dorosoma cepedianum. Can. J. Fish. Aquat. Sci., 68, 955–968. [CrossRef] [Google Scholar]
  • Catalano M.J. and Allen M.S., 2011b. Exploring strategies for gizzard shad removal that account for compensatory density dependence and uncertainty. N. Am. J. Fish. Manage., 31, 1153–1162. [CrossRef] [Google Scholar]
  • Catalano M.J., Allen M.S., Schaus M.H., Buck D.G. and Beaver J.R., 2010. Evaluating short-term effects of omnivorous fish removal on water quality and zooplankton at a subtropical lake. Hydrobiologia, 655, 159–169. [CrossRef] [Google Scholar]
  • Coveney M.F., Lowe E.F., Battoe L.E., Marzolf E.R. and Conrow R., 2005. Response of a eutrophic shallow subtropical lake to reduced nutrient loading. Freshw. Biol., 50, 1718–1730. and erratum, Freshw. Biol., 50, 2167. [CrossRef] [Google Scholar]
  • Coveney M.F., Stites D.L., Lowe E.F., Battoe L.E. and Conrow R., 2002. Nutrient removal from eutrophic lake water by wetland filtration. Ecol. Eng., 19, 141–159. [CrossRef] [Google Scholar]
  • Devries D.R. and Stein R.A., 1990. Manipulating shad to enhance sport fisheries in North America: an assessment. N. Am. J. Fish. Manage., 10, 209–223. [CrossRef] [Google Scholar]
  • Drenner R.W. and Hambright K.D., 1999. Review: biomanipulation of fish assemblages as a lake restoration technique. Arch. Hydrobiol., 146, 129–165. [Google Scholar]
  • Fulton R.S. III, 1995. External nutrient budget and trophic state modeling for lakes in the Upper Ocklawaha River Basin. St. Johns River Water Management District Technical Publication SJ95-6. [accessed 1 July 2013]. [Google Scholar]
  • Fulton R.S., III and Smith D., 2008. Development of phosphorus load reduction goals for seven lakes in the upper Ocklawaha River Basin, Florida. Lake Reservoir Manage., 24, 139–154. [CrossRef] [Google Scholar]
  • Gido K.B., 2002. Interspecific comparisons and the potential importance of nutrient excretion by benthic fishes in a large reservoir. Trans. Am. Fish. Soc., 131, 260–270. [CrossRef] [Google Scholar]
  • Godwin W., Coveney M., Lowe E. and Battoe L., 2011. Improvements in water quality following biomanipulation of gizzard shad (Dorosoma cepedianum) in Lake Denham, Florida. Lake Reservoir Manage., 27, 287–297. [CrossRef] [Google Scholar]
  • Hall R.O., Jr., Koch B.J., Marshall M.C., Taylor B.W. and Tronstad L.M., 2007. How body size mediates the role of animals in nutrient cycling in aquatic ecosystems. In: Hildrew A.G., Raffaelli D.G. and Edmonds-Brown R. (eds.), Body size: The structure and function of aquatic ecosystems, Cambridge University Press, Cambridge, UK, 286–305. [Google Scholar]
  • Hansson L.A., Annadotter H., Bergman E., Hamrin S.F., Jeppesen E., Kairesalo T., Luokkanen E., Nilsson P-Å, Søndergaard M. and Strand J., 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems, 1, 558–574. [CrossRef] [Google Scholar]
  • Higgins K.A., Vanni M.J. and Gonzalez M.J., 2006. Detritivory and the stoichiometry of nutrient cycling by a dominant fish species in lakes of varying productivity. Oikos, 114, 419–430. [CrossRef] [Google Scholar]
  • Irwin B.J., DeVries D.R. and Kim G.W., 2003. Responses to gizzard shad recovery following selective treatment in Walker County Lake, Alabama, 1996-1999. N. Am. J. Fish. Manage., 23, 1225–1237. [CrossRef] [Google Scholar]
  • Jeppesen E., Meerhoff M., Jacobsen B.A., Hansen R.S., Søndergaard M., Jensen J.P., Lauridsen T.L., Mazzeo N. and Branco C.W.C., 2007. Restoration of shallow lakes by nutrient control and biomanipulation – the successful strategy varies with lake size and climate. Hydrobiologia, 581, 269–285. [CrossRef] [Google Scholar]
  • Kim G.W. and DeVries D.R., 2000. Effects of a selectively reduced gizzard shad population on trophic interactions and age-0 fishes in Walker County Lake, Alabama. N. Am. J. Fish. Manage., 20, 860−872. [CrossRef] [Google Scholar]
  • Kosten S., Lacerot G., Jeppesen E., da Motta Marques D., van Nes E., Mazzeo N. and Scheffer M., 2009. Effects of submerged vegetation on water clarity across climates. Ecosystems, 12, 1117–1129. [CrossRef] [Google Scholar]
  • Lamarra V.A., Jr., 1975. Digestive activities of carp as a major contributor to the nutrient loading of lakes. Verh. Int. Ver. Theor. Angew. Limnol., 19, 2461–2468. [Google Scholar]
  • Matsuzaki S.S., Usio N., Takamura N. and Washitani I., 2007. Effects of common carp on nutrient dynamics and littoral community composition: roles of excretion and bioturbation. Fundam. Appl. Limnol., 168, 27–38. [CrossRef] [Google Scholar]
  • Meijer M.-L., de Bois I., Scheffer M., Portielje R. and Hosper H., 1999. Biomanipulation in shallow lakes in the Netherlands: an evaluation of 18 case studies. Hydrobiologia, 408-409, 13–30. [CrossRef] [Google Scholar]
  • Michaletz P.H. and Bonneau J.L., 2005. Age-0 gizzard shad abundance is reduced in the presence of macrophytes: implications for interactions with bluegills. Trans. Am. Fish. Soc., 134, 149–159. [CrossRef] [Google Scholar]
  • Pilati A. and Vanni M.J., 2007. Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos, 116, 1663–1674. [CrossRef] [Google Scholar]
  • Schaus M.H. and Vanni M.J., 2000. Effects of omnivorous gizzard shad on phytoplankton and nutrient dynamics: role of sediment feeding and fish size. Ecology, 81, 1701–1719. [CrossRef] [Google Scholar]
  • Schaus M.H., Vanni M.J., Wissing T.E., Bremigan M.T., Garvey J.E. and Stein R.A., 1997. Nitrogen and phosphorus excretion by detritivorous gizzard shad (Dorosoma cepedianum) in a reservoir ecosystem. Limnol. Oceanogr., 42, 1386–1397. [CrossRef] [Google Scholar]
  • Schaus M.H., Vanni M.J. and Wissing T.E., 2002. Biomass-dependent diet shifts in omnivorous gizzard shad: implications for growth, food web, and ecosystem effects. Trans. Am. Fish. Soc., 131, 40–54. [CrossRef] [Google Scholar]
  • Schaus M.H., Godwin W., Battoe L., Coveney M., Lowe E., Roth R., Hawkins C., Vindigni M., Weinberg C. and Zimmerman A., 2010. Impact of the removal of gizzard shad (Dorosoma cepedianum) on nutrient cycles in Lake Apopka, Florida. Freshw. Biol., 55, 2401–2413. [Google Scholar]
  • Scheffer M., 2001. Alternative attractors of shallow lakes. TheScientificWorldJOURNAL, 1, 254–263. [CrossRef] [PubMed] [Google Scholar]
  • Scheffer M., Hosper S.H., Meijer M-L., Moss B. and Jeppesen E., 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol., 8, 275–279. [Google Scholar]
  • Schelske C.L., Lowe E.F., Battoe L.E., Brenner M., Coveney M.F. and Kenney W.F., 2005. Abrupt biological response to hydrologic and land-use changes in Lake Apopka, Florida, USA. Ambio, 34, 192–198. [PubMed] [Google Scholar]
  • Schmidt-Nielsen K., 1975. Animal physiology, adaptation, and environment, Cambridge University Press, Cambridge, UK, 699 p. [Google Scholar]
  • Søndergaard M., Liboriussen L., Pedersen A.R. and Jeppesen E., 2008. Lake restoration by fish removal: short- and long-term effects in 36 Danish Lakes. Ecosystems, 11, 1291–1305. [CrossRef] [Google Scholar]
  • Vanni M.J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst., 33, 341–370. [Google Scholar]
  • Vanni M.J. and Layne C.D., 1997. Nutrient recycling and herbivory as mechanisms in the “top-down” effect of fish on phytoplankton in lakes. Ecology, 78, 21–40. [Google Scholar]
  • Wen Y.H. and Peters R.H., 1994. Empirical models of phosphorus and nitrogen excretion rates by zooplankton. Limnol. Oceanogr., 39, 1669–1679. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.