Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 410, 2013
Article Number 06
Number of page(s) 13
DOI https://doi.org/10.1051/kmae/2013061
Published online 15 August 2013
  • Blindow I., 1992. Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwat. Biol., 28, 15–27. [CrossRef] [Google Scholar]
  • Coesel P.F.M., 1993. Poor physiological adaptation to alkaline culture conditions in Closterium acutum var. variabile, a planktonic desmid from eutrophic waters. Eur. J. Phycol., 28, 53–57. [CrossRef] [Google Scholar]
  • Coops H. and Hosper H., 2002. Water-level management as a tool for the restoration of shallow lakes in the Netherlands. Lake Reserv. Manage., 18, 293–298. [CrossRef] [Google Scholar]
  • Coops H., Beklioglu M. and Crisman T.L., 2003. The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia, 506-509, 23–27. [CrossRef] [Google Scholar]
  • Dokulil M.T. and Mayer J., 1996. Population dynamics and photosynthetic rates of a CylindrospermopsisLimnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Arch. Hydrobiol. (Suppl.) (Algol. Stud.), 117, 179–195. [Google Scholar]
  • Evans C.D., Monteith D.T. and Cooper D.M., 2005. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ. Pollut., 137, 55–71. [CrossRef] [PubMed] [Google Scholar]
  • Findlay D.L., Paterson M.J., Hendzel L.L. and Kling H.J., 2005. Factors influencing Gonyostomum semen blooms in a small boreal reservoir lake. Hydrobiologia, 533, 243–252. [CrossRef] [Google Scholar]
  • France R.L., 1997. The importance of beaver lodges in structuring littoral communities in boreal headwater lakes. Can. J. Zool., 75, 1009–1113. [CrossRef] [Google Scholar]
  • Havens K.E., Sharfstein B., Brady M.A., East T.L. and Harwell M.C., 2004. Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquat. Bot., 78, 67–82. [Google Scholar]
  • Hehmann A., Krienitz I., and Koschel R., 2001. Long-term phytoplankton changes in an artificially divided, top-down manipulated humic lake. Hydrobiologia, 448, 83–96. [CrossRef] [Google Scholar]
  • Hermanowicz W., Dojlido J., Dożańska W., Koziorowski B. and Zerbe J. 1999. Physical-chemical investigation of water and sewage, Wydawnictwo Arkady, Warszawa, 274. [Google Scholar]
  • Hillbricht-Ilkowska A., Dusoge K., Ejsmont-Karabin J., Jasser I., Kufel I., Ozimek T., Rybak J.I., Rzepecki M. and Węgleńska T., 1998. Long term effects of liming in a humic lake: Ekosystem processes, biodiversity, food web functioning (Lake Flosek, Masurian Lakeland, Poland). Ekol. Pol., 46, 347–415. [Google Scholar]
  • Hillebrand H., Dürselen C.D., Kirschtel D., Pollingher U. and Zohary T., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 35, 403–424. [Google Scholar]
  • Holopainen A.-L., Niinioja R. and Rämö A., 2003. Seasonal succession, vertical distribution and long term variation of phytoplankton communities in two shallow forest lakes in eastern Finland. Hydrobiologia, 506–509, 237–245. [CrossRef] [Google Scholar]
  • Hutorowicz A., Szeląg-Wasielewska E., Grabowska M., Owsianny P.M., Pęczuła W. and Luścińska M., 2006. The occurence of Gonyostomum semen (Raphidophyceae) in Poland. Fragm. Flor. Geobot. Polonica, 13, 399–407. [Google Scholar]
  • ISO 10260, 1992. Water quality – Measurement of biochemical parameters - Spectrometric determination of the chlorophyll-a concentration, PKN, Warszawa. [Google Scholar]
  • Jones R.I., 1998. Phytoplankton, primary production and nutrient cycling. In: Hessen D.O. and Tranvik L. (eds.), Aquatic Humic Substances. Ecology and Biogeochemistry. Springer-Verlag, Berlin, Heidelberg, 145–175. [Google Scholar]
  • Kasperczyk B., 1987. Rozprzestrzenienie siê bobra (Castor fiber L.) w Europie w XX wieku. Przeg. Zool., 31, 181–193. [Google Scholar]
  • Keskitalo J., Salonen K. and Holopainen A.L., 1998. Long-term fluctuations in environmental conditions, plankton and macrophytes in a humic lake, Valkea-Kotinen. Boreal. Environ. Res., 3, 251–262. [Google Scholar]
  • Kieckbusch J.J. and Schrautzer J., 2007. Nitrogen and phosphorus dynamics of a re-wetted shallow-flooded peatland. Sci. Total. Environ., 380, 3–12. [CrossRef] [PubMed] [Google Scholar]
  • Klein T., 1993. Impact on lake development of changed agricultural watershed exploitation during the last three centuries. Hydrobiologia, 251, 297–308. [CrossRef] [Google Scholar]
  • Lean D., 1998. Attenuation of solar radiation in humic waters. In: Hessen D.O. and Tranvik L.J. (eds.), Aquatic humic substances, Ecology and Biogeochemistry, Springer-Verlag, Berlin, Heidelberg, 109–124. [Google Scholar]
  • Lepistö L., Antikainen S. and Kivinen J., 1994. The occurrence of Gonyostomum semen (Ehr.) Diesing in Finnish lakes. Hydrobiologia, 273, 1–8. [CrossRef] [Google Scholar]
  • Michalczyk Z., Chmiel S. and Turczyński M., 2011. Lake water stage dynamics in the Łêczna-Włodawa Lake District in 1991-2010. Limnol. Rev., 11, 113–122. [Google Scholar]
  • Naselli-Flores L. and Barone R., 2000. Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia, 438, 65–74. [CrossRef] [Google Scholar]
  • Nõges T. and Nõges P., 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia, 408-409, 277–283. [CrossRef] [Google Scholar]
  • Nürnberg G.K. and Shaw M., 1998. Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria. Hydrobiologia, 382, 97–112. [Google Scholar]
  • Paterson M.J., Findlay D., Beaty K., Findlay W., Schindler E.U., Stainton M. and McCullough G., 1997. Changes in the planktonic food web of a new experimental reservoir. Can. J. Fish. Aquat. Sci., 54, 1088–1102. [Google Scholar]
  • Pęczuła W., 2007. Mass development of the algal species Gonyostomum semen (Raphidophyceae) in the mesohumic Lake Płotycze (central-eastern Poland). Ocean. Hydrobiol. Stud., 36 (Suppl. 1), 163–172. [Google Scholar]
  • Poniewozik M., Wojciechowska W. and Solis M., 2011. Dystrophy or eutrophy: phytoplankton and physicochemical parameters in the functioning of humic lakes. Ocean. Hydrobiol. Stud., 40, 22–29. [CrossRef] [Google Scholar]
  • Reddy K.R., Kadlec R.H., Flaig E. and Gale P.M., 1999. Phosphorus retention in streams and wetlands: A review. Crit. Rev. Env. Sci. Tech., 29, 83–146. [Google Scholar]
  • Rengefors K., Weyhenmeyer G.A. and Bloch I., 2012. Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes. Harmful Algae, 18, 65–73. [CrossRef] [Google Scholar]
  • Reynolds C.S. and Petersen A.C., 2000. The distribution of planktonic Cyanobacteria in Irish lakes in relation to their trophic states. Hydrobiologia, 424, 91–99. [CrossRef] [Google Scholar]
  • Rosell F., Bozser O., Collen P. and Parker H., 2005. Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems. Mammal. Rev., 35, 248–276. [CrossRef] [Google Scholar]
  • Rosen G., 1981. Phytoplankton indicators and their relations to certain chemical and physical factors. Limnologica, 13, 263–290. [Google Scholar]
  • Salonen K. and Rosenberg M., 2000. Advantages from diel vertical migration can explain the dominance of Gonyostomum semen (Raphidophyceae) in a small, steeply-stratified humic lake. J. Plank. Res., 22, 1841–1853. [Google Scholar]
  • Sender J., 2011. Development of floating-leaved vegetation in three lakes of varied trophy (Leczna-Wlodawa Lakeland). Limnol. Rev., 11, 163–169. [Google Scholar]
  • Tiemeyer B., Lennartz B., Schlichting A. and Vegelin K., 2005. Risk assessment of the phosphorus export from a re-wetted peatland. Phys. Chem. Earth., 30, 550–560. [CrossRef] [Google Scholar]
  • Urbanová Z., Picek T. and Bárta J., 2011. Effect of peat re-wetting on carbon and nutrient fluxes, greenhouse gas production and diversity of methanogenic archaeal community. Ecol. Eng., 37, 1017–1026. [CrossRef] [Google Scholar]
  • Vollenweider R.A., 1969. A manual on methods for measuring primary production in aquatic environments, Blackwell, Oxford-Edinburgh, 213. [Google Scholar]
  • Vuorenmaa J., Forsius M. and Mannio J., 2006. Increasing trends of total organic carbon concentrations in small forest lakes in Finland from 1987 to 2003. Sci. Total. Environ., 365, 47–65. [Google Scholar]
  • Wetzel R.G., 1992. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia, 229, 181–198. [CrossRef] [Google Scholar]
  • Williamson C.E., Morris D.P., Pace M.L. and Olson O.G., 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnol. Oceanogr., 44, 795–203. [Google Scholar]
  • Wilk-Woźniak E., and Mazurkiewicz-Boroń G., 2003. The autumn dominance of cyanoprokaryotes in a deep meso-eutrophic submontane reservoir. Biologia, 58, 17–24. [Google Scholar]
  • Wojciechowska W., Solis M. and Mencfel R., 2012. Phytoplankton as an ecological criterion for differentation of mid-forest lakes in Sobibór Landscape Park. Teka Kom. Ochr. Kszt. Ňrod. Przyr., 9, 260–266. [Google Scholar]
  • Zak D. and Gelbrecht J., 2007. The mobilisation of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany). Biogeochemistry, 85, 141–151. [CrossRef] [Google Scholar]
  • Zieliński P., Ejsmont-Karabin J., Grabowska M. and Karpowicz M., 2011. Ecological status of shallow Lake Gorbacz (NE Poland) in its final stage before drying up. Ocean. Hydrobiol. Stud., 40, 1–12. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.