Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 404, 2012
Article Number 06
Number of page(s) 14
DOI https://doi.org/10.1051/kmae/2011086
Published online 26 January 2012
  • Ågren A., Buffam I., Berggren M., Bishop K., Jansson M. and Laudon H., 2008. Dissolved organic carbon characteristics in boreal streams in a forest-wetland gradient during the transition between winter and summer. J. Geophys. Res., 113, G03031. [CrossRef] [Google Scholar]
  • Arvola L., Räike A., Kortelainen P. and Järvinen M., 2004. The effect of climate and landuse on TOC concentrations and loads in Finnish rivers. Boreal Environ. Res., 9, 381–387. [Google Scholar]
  • Baker A., Tipping E., Thacker S.A. and Gondar D., 2008. Relating dissolved organic matter fluorescence and functional properties. Chemosphere, 73, 1765–1772. [CrossRef] [PubMed] [Google Scholar]
  • Chen Y., Senesi N. and Schnitzer M., 1977. Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J., 41, 352–358. [Google Scholar]
  • Chen J., Gu B., LeBoeuf E.J., Pan H. and Dai S., 2002. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere, 48, 59–68. [CrossRef] [PubMed] [Google Scholar]
  • Chin Y., Aiken G.R. and O’Loughlin E., 1994. Molecular weight, polydispersity and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol., 28, 1853–1858. [Google Scholar]
  • Clair T.A., Dennis I.F., Vet R. and Laudon H., 2008. Long-term trends in catchment organic carbon and nitrogen exports from three acidified catchments in Nova Scotia, Canada. Biogeochemistry, 87, 83–97. [CrossRef] [Google Scholar]
  • Clesceri L.S., Greenberg A.E., Eaton A.D. (Eds.), 1999. Standard Methods for the Examination of Water and Wastewater, 20th edition, American Public Hea lth Association, Washington DC. [Google Scholar]
  • CORINE Land Cover 2000 Latvija, 2003. Latvijas Vides aģentūra, Eiropas Vides aģentūra (scale 1:100000). [Google Scholar]
  • de Lange H.J., Morris D.P. and Williamson C.E., 2003. Solar ultraviolet photodegradation of DOC may stimulate freshwater food webs. J. Plankt. Res., 25, 111–117. [Google Scholar]
  • Depetris P.J. and Kempe S., 1993. Carbon dynamics and sources in the Parana River. Limnol. Oceanogr., 38, 382–395. [CrossRef] [Google Scholar]
  • Erlandsson M., Buffam I., Fölster J., Laudon H., Temnerud J., Weyhenmeyer G.A. and Bishop K., 2008. Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Glob. Chang. Biol., 14, 1–8. [Google Scholar]
  • Evans C.D., Monteith D.T. and Cooper D.M., 2005. Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ. Pollut., 137, 55–71. [CrossRef] [PubMed] [Google Scholar]
  • Fellman J.B., Hood E., D’Amore D.V., Edwards R.T. and White D., 2009. Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry, 95, 277–293. [CrossRef] [Google Scholar]
  • Gergel S.E., Turner M.G. and Kratz T.K., 1999. Dissolved organic carbon as an indicator of the scale of watershed influence on lakes and rivers. Ecol. Appl., 9, 1377–1390. [CrossRef] [Google Scholar]
  • Hejzlar J., Dubrovsky M., Buchtele J. and Ružička M., 2003. The apparent and potential effects of climate change on the inferred concentration of dissolved organic matter in a Sci. Total Environ., 310, 143–152. [CrossRef] [Google Scholar]
  • Hongve D., Riise G. and Kristiansen J.F., 2004. Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water – a result of increased precipitation? Aquat. Sci., 66, 231–238. [CrossRef] [Google Scholar]
  • Kelton N., Molot L.A. and Dillon P.J., 2007. Spectrofuorimetric properties of dissolved organic matter from Central and Southern Ontario streams and the influence of iron and irradiation. Water Res., 41, 638–646. [CrossRef] [PubMed] [Google Scholar]
  • Klavins M., Rodinovs V. and Kokorite I., 2002. Chemistry of surface waters in Latvia. Riga, LU. [Google Scholar]
  • Kokorite I., Klavins M. and Rodinov V., 2010. Impact of catchment properties on aquatic chemistry in the river of Latvia. Hydrol. Res., 41, 320–329. [CrossRef] [Google Scholar]
  • McKnight D., Boyer E.W., Westerhoff P.K., Doran P.T., Kulbe T. and Andersen D.T., 2001. Spectrofluorimetric characterization of dissolved organic matter for identification of precursor organic material and aromaticity. Limnol. Oceanogr., 46, 38–48. [CrossRef] [Google Scholar]
  • Neff J.C. and Asner G.P., 2001. Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems, 4, 29–48. [CrossRef] [Google Scholar]
  • Ohno T., 2002. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol., 36, 742–746. [CrossRef] [PubMed] [Google Scholar]
  • Pettine M., Patrolecco L., Camusso M. and Crescenzio S., 1998. Transport of carbon and nitrogen to the Northern Adriatic Sea by the Po River. Estuar. Coast. Shelf S., 46, 127–142. [CrossRef] [Google Scholar]
  • Peuravuori J., Koivikko R. and Pihlaja K., 2002. Characterization, differentiation and classification of aquatic humic matter separated with different sobents: synchronous scanning fluorescence spectroscopy. Water Res., 36, 4552–4562. [Google Scholar]
  • Roulet N. and Moore T.R., 2006. Browning the waters. Nature, 414, 283–284. [CrossRef] [Google Scholar]
  • Selberg A., Viik M., Ehapalu K. and Tenno T., 2011. Content and composition of natural organic matter in water of Lake Pitkajärv and mire feeding Kuke River (Estonia). J. Hydrol., 400, 274–280. [CrossRef] [Google Scholar]
  • Standard methods for chemical analysis of surface waters, 1973. Leningrad: Gidromeoizdat (in Russian). [Google Scholar]
  • Vuorenmaa J., Forsius M. and Mannio J., 2006. Increasing trends of total organic carbon concentrations in small forest lakes in Finland from 1987 to 2003. Sci. Total Environ., 365, 47–65. [CrossRef] [PubMed] [Google Scholar]
  • Westerhoff P. and Anning D., 2000. Concentrations and characteristics of organic carbon in surface water in Arizona: influence of urbanization. J. Hydrol., 236, 202–222. [CrossRef] [Google Scholar]
  • Worrall F. and Burt T.P., 2007. Trends in DOC concentration in Great Britain. J. Hydrol., 346, 81–92. [CrossRef] [Google Scholar]
  • Worrall F., Burt T. and Shedden R., 2003. Long term records of riverine dissolved organic matter. Biogeochemistry, 64, 165–178. [CrossRef] [Google Scholar]
  • Wu F.C., Kothawala D.N., Evans R.D., Dillon P.J. and Cai Y.R., 2007. Relationship between DOC concentration, molecular size and fluorescence properties of DOM in a stream. Appl. Geochem., 22, 1659–1667. [CrossRef] [Google Scholar]
  • Zsolnay A., Baigar E., Jimenez M., Steinweg B. and Saccomandi F., 1999. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38, 45–50. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.