Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 403, 2011
Article Number 06
Number of page(s) 14
DOI https://doi.org/10.1051/kmae/2011067
Published online 21 October 2011
  • Bache B.W. and Williams E.G., 1971. Phosphate sorption index for soils. J. Soil Sci., 22, 289–301. [CrossRef] [Google Scholar]
  • Borda T., Withers P.J.A., Sacco D., Zavattaro L. and Barberis E., 2010. Predicting mobilization of suspended sediments and phosphorus from soil properties: a case study from the north west Po valley, Piemonte, Italy. Soil Use Manage., 26, 310–319. [CrossRef] [Google Scholar]
  • Datta S.P., Rattan R.K. and Chandra S., 2010. Labile soil organic carbon, soil fertility, and crop productivity as influenced by manure and mineral fertilizers in the tropics. J. Plant Nutr. Soil Sci., 173, 715–726. [CrossRef] [Google Scholar]
  • Dorich R.A., Nelson D.W. and Sommers L.E., 1984. Availability of phosphorus to algae from eroded soil fractions. Agric. Ecosyst. Environ., 11, 253–264. [CrossRef] [Google Scholar]
  • Fang F., Brezonik P.L., Mulla D.J. and Hatch L.K., 2005. Characterization of soil algal bioavailable phosphorus in the Minnesota river basin. Soil Sci. Soc. Am. J., 69, 1016–1025. [CrossRef] [Google Scholar]
  • Hiradate S. and Uchida N., 2004. Effects of soil organic matter on pH-dependent phosphate sorption by soils. Soil Sci. Plant. Nutr., 50, 665–675. [CrossRef] [Google Scholar]
  • Indiati R., Trujillo I. and Gutierrez F., 2002. Characterization of P adsorption properties of some agricultural volcanic soils from Canary Islands, Spain. Trop. Agric., 79, 254–259. [Google Scholar]
  • Janardhanan L. and Daroub S.H., 2010. Phosphorus sorption in organic soils in south Florida. Soil Sci. Soc. Am. J., 74, 1597–1606. [CrossRef] [Google Scholar]
  • Jarvie H.P., Jurgens M.D., Williams R.J., Neal C., Davies J.J.L., Barrett C. and White J., 2005. Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: the Hampshire Avon and Herefordshire Wye. J. Hydrol., 304, 51–74. [CrossRef] [Google Scholar]
  • Kerr J.G., Burford M., Olley J. and Udy J., 2011. Phosphorus sorption in soils and sediments: implications for phosphate supply to a subtropical river in southeast Queensland, Australia. Biogeochemistry, 102, 73–85. [CrossRef] [Google Scholar]
  • Li M., Hou Y.L. and Zhu B., 2007. Phosphorus sorption-desorption by purple soils of China in relation to their properties. Aust. J. Soil Res., 45, 182–189. [CrossRef] [Google Scholar]
  • Lopez-Pineiro A., Cabrera D., Pena D., Albarran A. and Nunes J.M.R., 2009. Phosphorus adsorption and fractionation in a two-phase olive Mill waste amended soil. Soil Sci. Soc. Am. J., 73, 1539–1544. [CrossRef] [Google Scholar]
  • Luo Z.X., Zhu B., Tang J.L. and Wang T., 2009. Phosphorus retention capacity of agricultural headwater ditch sediments under alkaline condition in purple soils area, China. Ecol. Eng., 35, 57–64. [CrossRef] [Google Scholar]
  • McDowell R.W. and Sharpley A.N., 2001. A comparison of fluvial sediment phosphorus (P) chemistry in relation to location and potential to influence stream P concentrations. Aquat. Geochem., 7, 255–265. [CrossRef] [Google Scholar]
  • Mohammadi S., Kalbasi M. and Shariatmadari H., 2009. Cumulative and residual effects of organic fertilizer application on selected soil properties, water soluble P, Olsen-p and P sorption index. J. Agric. Sci. Technol., 11, 487–497. [Google Scholar]
  • Olsen S.R., Cole C.V., Watanabe F.S. and Dean L.A., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In: USDA Circular, USDA, Washington DC, 939 p. [Google Scholar]
  • Pothig R., Behrendt H., Opitz D. and Furrer G., 2010. A universal method to assess the potential of phosphorus loss from soil to aquatic ecosystems. Environ. Sci. Pollut. R., 17, 497–504. [CrossRef] [Google Scholar]
  • Quang V.D., Thai V.C., Linh T.T.T. and Dufey J.E., 1996. Phosphorus sorption in soils of the Mekong delta (Vietnam) as described by the binary Langmuir equation. Eur. J. Soil Sci., 47, 113–123. [CrossRef] [Google Scholar]
  • Saunders W.M.H. and Williams E.G., 1955. Observations on the determination of total organic phosphorus in soils. J. Soil Sci., 6, 254–267. [CrossRef] [Google Scholar]
  • Serrano L., Burgos M.D., Diaz-Espejo A. and Toja S., 1999. Phosphorus inputs to wetlands following storm events after drought. Wetlands, 19, 318–326. [CrossRef] [Google Scholar]
  • Shang G.P. and Shang J.C., 2005. Causes and control countermeasures of eutrophication in Chaohu lake, China. Chinese Geogr. Sci., 15, 348–354. [CrossRef] [Google Scholar]
  • Sharpley A.N., Troeger W.W. and Smith S.J., 1991. The Measurement of bioavailable phosphorus in agricultural runoff. J. Environ. Qual., 20, 235–238. [CrossRef] [Google Scholar]
  • Singh V., Dhillon N. and Brar B., 2006. Influence of long-term use of fertilizers and farmyard manure on the adsorption-desorption behaviour and bioavailability of phosphorus in soils. Nutr. Cycl. Agroecosys., 75, 67–78. [CrossRef] [Google Scholar]
  • Stutter M.I. and Lumsdon D.G., 2008. Interactions of land use and dynamic river conditions on sorption equilibria between benthic sediments and river soluble reactive phosphorus concentrations. Water Res., 42, 4249–4260. [CrossRef] [PubMed] [Google Scholar]
  • Subramaniam V. and Singh B.R., 1997. Phosphorus supplying capacity of heavily fertilized soils .1. Phosphorus adsorption characteristics and phosphorus fractionation. Nutr. Cycl. Agroecosys., 47, 115–122. [CrossRef] [Google Scholar]
  • Tripathi K.P. and Praveen-Kumar, 2000. Phosphate adsorption in aridisols in relation to soil properties. Ann. Arid. Zone, 39, 131–135. [Google Scholar]
  • Troitino F., Gil-Sotres F., Leiros M.C., Trasar-Cepeda C. and Seoane S., 2008. Effect of land use on some soil properties related to the risk of loss of soil phosphorus. Land Degrad. Dev., 19, 21–35. [CrossRef] [Google Scholar]
  • Varinderpal-Singh, Dhillon N.S. and Brar B.S., 2006. Effect of incorporation of crop residues and organic manures on adsorption/desorption and bio-availability of phosphate. Nutr. Cycl. Agroecosys., 76, 95–108. [CrossRef] [Google Scholar]
  • Wang X.M. and Hou Y.L., 2004. Effect of continuous vegetable cultivation on phosphorus levels of fluvo-aquic soils. Pedosphere, 14, 171–176. [Google Scholar]
  • Xu M.Q., Cao H., Xie P., Deng D.G., Feng W.S. and Xu H., 2005. The temporal and spatial distribution, composition and abundance of Protozoa in Chaohu lake, China: Relationship with eutrophication. Eur. J. Protistol., 41, 183–192. [CrossRef] [Google Scholar]
  • Zhang W., Faulkner J.W., Giri S.K., Geohring L.D. and Steenhuis T.S., 2010. Effect of soil reduction on phosphorus sorption of an organic-rich silt loam. Soil Sci. Soc. Am. J., 74, 240–249. [CrossRef] [Google Scholar]
  • Zheng L.G., Liu G.J., Kang Y. and Yang R.K., 2010. Some potential hazardous trace elements contamination and their ecological risk in sediments of western Chaohu lake, China. Environ. Monit. Assess., 166, 379–386. [CrossRef] [PubMed] [Google Scholar]
  • Zhou Y.Y., Song C.L., Cao X.Y., Li J.Q., Chen G.Y., Xia Z.Y. and Jiang P.H., 2008. Phosphorus fractions and alkaline phosphatase activity in sediments of a large eutrophic Chinese, lake (lake Taihu). Hydrobiologia, 599, 119–125. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.