Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 401, 2011
European Crayfish: food, flagships and ecosystem services
Article Number 21
Number of page(s) 14
DOI https://doi.org/10.1051/kmae/2011037
Published online 19 July 2011
  • Adriaenssens V., De Baets B., Goethals P.L.M. and De Pauw N., 2004a. Fuzzy rule-based models for decision support in ecosystem management. Sci. Total Environ., 319, 1–12. [CrossRef] [PubMed] [Google Scholar]
  • Adriaenssens V., Goethals P.L.M., Charles J. and De Pauw N., 2004b. Application of Bayesian belief networks for the prediction of macroinvertebrate taxa in rivers. Ann. Limnol. - Int. J. Lim., 40, 181–191. [CrossRef] [EDP Sciences] [Google Scholar]
  • Baillie J. and Groombridge B., 1996. IUCN Red List of Threatened Animals, IUCN, Gland, 105 p. [Google Scholar]
  • Barbaresi S., Cannicci S., Vannini M. and Fratini S., 2007. Environmental correlates of two macro-decapods distribution in Central Italy: Multi-dimensional ecological knowledge as a tool for conservation of endangered species. Biol. Conserv., 36, 431–441. [Google Scholar]
  • Broquet T., Thibault M. and Neveu A., 2002. Distribution and habitat requirements of the white clawed-crayfish, Austropotamobius pallipes, in a stream from the pays de Loire region, France: an experimental and descriptive study. Bull. Fr. Pêche. Piscic., 367, 717–728. [Google Scholar]
  • Brown M.P.S., Grundy W.N., Lin D., Cristianini N., Sugnet C.W., Furey T.S., Ares M. and Haussler D., 2000. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. USA, 97, 262–267. [CrossRef] [Google Scholar]
  • Brusconi S., Bertocchi S., Renai B., Scalici M., Souty-Grosset C. and Gherardi F., 2008. Conserving indigenous crayfish: stock assessment and habitat requirements in the threatened Austropotamobius italicus. Aquat. Cons. Mar. Freshw. Ecosyst., 18, 1227–1239. [Google Scholar]
  • Burges C.J.C., 1998. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov., 3, 121–167. [Google Scholar]
  • Chan K.C. and Wong A.K., 1991. A statistical technique for extracting classificatory knowledge from databases. In: Piatetsky-Shapiro R. and Frawley W. (eds.), Knowledge Discovery in Databases, AAAI/MIT Press, Cambridge, 107–123. [Google Scholar]
  • Cristianini N. and Scholkopf B., 2002. Support vector machines and kernel methods – the new generation of learning machines. Ai Mag., 23, 31–41. [Google Scholar]
  • Cohen J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Meas., 20, 37–46. [Google Scholar]
  • Cushing J.B. and Wilson T., 2005. Eco-informatics for decision makers advancing a research agenda. In: Ludäscher B. and Raschid L. (eds.), Data Integration in the Life Sciences: Second International Workshop, DILS 2005, San Diego, CA, USA, Proceedings, Lecture Notes in Computer Science, 3615, Springer-Verlag, Berlin, 325–334. [Google Scholar]
  • D’heygere T., Goethals P.L.M. and De Pauw N., 2006. Genetic algorithms for optimisation of predictive ecosystems models based on decision trees and neural networks. Ecol. Model., 195, 20–29. [CrossRef] [Google Scholar]
  • Dakou E., D’heygere T., Dedecker A.P., Goethals P.L.M., Lazaridou-Dimitriadou M. and De Pauw N., 2007. Decision tree models for prediction of macroinvertebrate taxa in the river Axios (Northern Greece). Aquat. Ecol., 41, 399–411. [CrossRef] [Google Scholar]
  • De’ath G. and Fabricius K.E., 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology, 81, 3178–3192. [CrossRef] [Google Scholar]
  • Decoste D. and Scholkopf B., 2002. Training invariant support vector machines. Mach. Learn., 46, 161–190. [CrossRef] [Google Scholar]
  • Dedecker A.P., Goethals P.L.M., Gabriëls W. and De Pauw N., 2002. Comparison of artificial neural network (ANN) model development methods for prediction of macroinvertebrates communities in the Zwalm river basin in Flanders, Belgium. Scientific World J., 2, 96–104. [Google Scholar]
  • Dedecker A., Goethals P.L.M., Gabriels W. and De Pauw N., 2004. Optimisation of Artificial Neural Network (ANN) model design for prediction of macroinvertebrate communities in the Zwalm river basin (Flanders, Belgium). Ecol. Model., 174, 161–173. [CrossRef] [Google Scholar]
  • Dedecker A.P, Goethals P.L.M. and De Pauw N., 2005. Sensitivity and robustness of stream model based on artificial neural networks for the simulation of different management scenarios. In: Lek S., Scardi M., Verdonschot P.F.M., Descy J.P. and Park Y.S. (eds.), Modelling Community Structure in Freshwater Ecosystems, Springer-Verlag, Berlin, 133–146. [Google Scholar]
  • Dedecker A., Van Melckebeke K., Goethals P.L.M. and De Pauw N., 2007. Development of migration models for macroinvertebrates in the Zwalm river basin (Flanders, Belgium) as tools for restoration management. Ecol. Model., 203, 72–86. [CrossRef] [Google Scholar]
  • Drake J.M., Randin C. and Guisan A., 2006. Modelling ecological niches with support vector machines. J. Appl. Ecol., 43, 424–432. [CrossRef] [Google Scholar]
  • Duda R.O., Hart P.E. and Stork D.G., 2001. Pattern Classification, John Wiley & Sons, New York, 654 p. [Google Scholar]
  • Dzeroski S., Demsar D. and Grbovic J., 2000. Predicting chemical parameters of river water quality from bioindicator data. Appl. Intell., 13, 7–17. [CrossRef] [Google Scholar]
  • Elith J., Graham C.H., Anderson R.P., Dudìk M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L.G., Loiselle B.A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J.McC., Peterson A.T., Phillips S.J., Richardson K.S., Scachetti-Pereira R., Schapire R.E., Soberón J., Williams S., Wisz M.S. and Zimmermann N.E., 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151. [CrossRef] [EDP Sciences] [Google Scholar]
  • Favaro L., Tirelli T. and Pessani D., 2010. The role of water chemistry in the distribution of Austropotamobius pallipes (Crustacea Decapoda Astacidae) in Piedmont (Italy). C. R. Biol., 333, 68–75. [Google Scholar]
  • Ferrier S. and Guisan A., 2006. Spatial modelling of biodiversity at the community level. J. Appl. Ecol., 43, 393–404. [CrossRef] [Google Scholar]
  • Fielding A.H., 1999. Machine Learning Methods for Ecological Applications, Kluwer Academic Publishers, New York, 280 p. [Google Scholar]
  • Fielding A.H. and Bell J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence / absence models. Environ. Conserv., 24, 38–49. [Google Scholar]
  • Foody G.M., 1992. On the compensation for chance agreement in image classification accuracy assessment. Photogramm. Eng. Rem. S., 58, 1459–1460. [Google Scholar]
  • Gabriels W., Goethals P.L.M., Dedecker A.P., Lek S. and De Pauw N., 2007. Analysis of macrobenthic communities in Flanders, Belgium, using a stepwise input variable selection procedure with artificial neural networks. Aquat. Ecol., 41, 427–441. [CrossRef] [Google Scholar]
  • Gelder S.R., Delmastro G.B. and Rayburn J.N., 1999. Distribution of native and exotic branchiobdellidans (Annelida: Clitellata) on their respective crayfish hosts in northern Italy, with first record of native Branchiobdella species on an exotic North American crayfish. J. Limnol., 58, 20–24. [Google Scholar]
  • Gherardi F., Acquistapace P. and Santini G., 2001. Foraging in the white-clawed crayfish, Austropotamobius pallipes a threatened species. Arch. Hydrobiol., 152, 339–351. [Google Scholar]
  • Goethals P.L.M., Džeroski S., Vanrolleghem P. and De Pauw N., 2001. Prediction of benthic macro-invertebrate taxa (Asellidae and Tubificidae) in watercourses of Flanders by means of classification trees, IWA 2nd World water congress, Berlin, 5–6. [Google Scholar]
  • Goethals P.L.M., Dedecker A.P., Gabriels W., Lek S. and De Pauw N., 2007. Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquat. Ecol., 41, 491–508. [CrossRef] [Google Scholar]
  • Goldberg D.E., 1989. Genetic Algorithm in Search, Optimization and Machine Learning, Addison-Winsley Publishing Company, Reading, 412 p. [Google Scholar]
  • Grandjean F., Cornuault B., Archambault S., Bramard M. and Otrebsky G., 2000. Life history and population biology of the white-clawed crayfish, Austropotamobius pallipes pallipes, in a brook from the Poitou-Charentes region (France). Bull. Fr. Pêche. Piscic., 356, 55–70. [Google Scholar]
  • Green J.L., Hastings A., Arzberger P., Ayala F.J., Cottingham K.L., Cuddington K., Davis F., Dunne J.A., Fortin M.J., Gerber L. and Neubert M., 2005. Complexity in ecology and conservation: mathematical, statistical, and computational challenges. BioScience, 55, 501–510. [CrossRef] [Google Scholar]
  • Guisan A. and Zimmermann N.E., 2000. Predictive habitat distribution models in ecology. Ecol. Model., 135, 147–168. [Google Scholar]
  • Guo Q., Kellya M., and Graham C.H., 2005. Support vector machines for predicting distribution of Sudden Oak Death in California. Ecol. Model., 182, 75–90. [CrossRef] [Google Scholar]
  • Hall M.A., 1998. Correlation-based Feature Subset Selection for Machine Learning, Ph.D. Dissertation, University of Waikato, Waikato, New Zealand. [Google Scholar]
  • Hoang H., Recknagel F., Marshall J. and Choy J., 2001. Predictive modelling of macroinvertebrate assemblages for stream habitat assessments in Queensland (Australia). Ecol. Model., 146, 195–206. [CrossRef] [Google Scholar]
  • Hoang H., Lock K., Mouton A. and Goethals P.L.M., 2010. Application of classification trees and support vector machines to model the presence of macroinvertebrates in rivers in Vietnam. Ecol. Inform., 5, 140–146. [CrossRef] [Google Scholar]
  • Hobbs Jr. H.H., 1975. Adaptations and convergence in North American crayfish. Freshwater Crayfish, 2, 541–551. [Google Scholar]
  • Holdich D.M., 2003. Ecology of the white-clawed crayfish Austropotamobius pallipes, Conserving Natura 2000 Rivers Ecology Series No. 1, English Nature, Peterborough, 17 p. [Google Scholar]
  • Holdich D.M. and Rogers W.D., 1997. Strategy for the management of white-clawed crayfish (Austropotamobius pallipes) populations in England and Wales, R&D Project 640, Environment Agency, Bristol, 23 p. [Google Scholar]
  • Hosmer D. and Lemeshow S., 2000. Applied Logistic Regression, John Wiley and Sons Inc., New York, 392 p. [Google Scholar]
  • Hu Q. and Davis C., 2005. Automatic plankton image recognition with co-occurrence matrices and Support Vector Machine. Mar. Ecol. Prog. Ser., 295, 21–31. [CrossRef] [Google Scholar]
  • Huang C., Davis L.S. and Townshend J.R.G., 2002. An assessment of support vector machines for land cover classification. Int. J. Remote Sens., 23, 725–749. [CrossRef] [Google Scholar]
  • Joachims T., 1998. Text categorization with support vector machines: learning with many relevant features. In: Proceedings of ECML-98, 10th European Conference on Machine Learning, Springer-Verlag, Berlin, 137–142. [Google Scholar]
  • Keerthi S.S., Shevade S.K., Bhattacharya C. and Murthy K.R.K., 2001. Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput., 13, 637–649. [CrossRef] [Google Scholar]
  • Landis J.R. and Koch G.G., 1977. The measurements of observer agreement for categorical data. Biometrics, 33, 159–174. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Lek S., Belaud A., Baran P., Dimopoulos I. and Delacoste M., 1996. Role of some environmental variables in trout abundance models using neural networks. Aquat. Living Resour., 9, 23–29. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lencioni V., Maiolini B., Marziali L., Lek S. and Rossaro B., 2007. Macroinvertebrate assemblages in glacial stream systems: a comparison of linear multivariate methods with artificial neural networks. Ecol. Model., 203, 119–131. [CrossRef] [Google Scholar]
  • Manel S., Dias J.M., Buckton S.T. and Ormerod S.J., 1999. Alternative methods for predicting species distribution: an illustration with Himalayan river birds. J. Appl. Ecol., 36, 734–747. [CrossRef] [Google Scholar]
  • Manel S., Williams H.C. and Ormerod S.J., 2001. Evaluating presence/absence models in ecology: the need to account for prevalence. J. Appl. Ecol., 38, 921–931. [CrossRef] [Google Scholar]
  • Mouton A.M., De Baets B. and Goethals P.L.M., 2009. Knowledge-based versus data-driven fuzzy habitat suitability models for river management. Environ. Model. Softw., 24, 982–993. [CrossRef] [Google Scholar]
  • Nardi P.A., Bernini F., Bo T., Bonardi A., Fea G., Ferrari S., Ghia D., Negri A., Razzetti E. and Rossi S., 2004. Il gambero di fiume nella provincia di Alessandria, PI-ME, Pavia, 111 p. [Google Scholar]
  • Nardi P.A., Bernini F., Brocca M., Fea G., Ghia D. and Spairani M., 2006. Esperienze di introduzione di Austropotamobius italicus Ler. in un SIC del Parco regionale lombardo della valle del Ticino. Pianura, 20, 127–145. [Google Scholar]
  • Nix H.A., 1986. A biogeogaphic analysis of Australian Elapid snakes. In: Longmore R. (ed.), Atlas of Australian Elapid Snakes, Australian Flora and Fauna Series, 8, 4–15. [Google Scholar]
  • Nyström P., 1999. Ecological impact of introduced and native crayfish on freshwater communities: European perspectives. In: Gherardi F. and Holdich D.M. (eds.), Crayfish in Europe as alien species: How to make the best of a bad situation?, AA Balkema, Rotterdam, 63–85. [Google Scholar]
  • Nyström P., Brönmark C. and Granéli W., 1999. Influence of an exotic and a native crayfish species on a littoral benthic community. Oikos, 85, 545–553. [CrossRef] [Google Scholar]
  • Obach M., Wagner R., Werner H. and Schmidt H.H., 2001. Modelling population dynamics of aquatic insects with artificial neural networks. Ecol. Model., 146, 207–217. [CrossRef] [Google Scholar]
  • Olden J.D. and Jackson D.A., 2002. A comparison of statistical approaches for modelling fish species distributions. Freshw. Biol., 47, 1976–1995. [CrossRef] [Google Scholar]
  • Park Y.S. and Chon T.S., 2007. Biologically-inspired machine learning implemented to ecological informatics. Ecol. Model., 203, 1–7. [CrossRef] [Google Scholar]
  • Peterson A.T. and Vieglais D.A., 2001. Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. BioScience, 51, 363–371. [CrossRef] [Google Scholar]
  • Pivard S., Demšar D., Lecomte J., Debeljak M. and Džeroski S., 2008. Characterizing the presence of oilseed rape feral populations on field margins using machine learning. Ecol. Model., 212, 147–154. [CrossRef] [Google Scholar]
  • Platt J.C., 1998. Fast training of support vector machines using sequential minimaloptimization. In: Schölkopf B., Burges C. and Smola A. (eds.), Advances in Kernel Methods: Support Vector Machines, MIT Press, Cambridge, 185–208. [Google Scholar]
  • Platt J.C., 1999. Using sparseness and analytic QP to speed training of support vector machines. In: Kearns M.S., Solla S.A. and Cohn D.A. (eds.), Advances in neural information processing systems, 11, MIT Press, Cambridge, 557–563. [Google Scholar]
  • Quinlan J.R., 1990. Decision trees and decision making. IEEE Transactions on Systems, Man and Cybernetics, 20, 339–346. [CrossRef] [Google Scholar]
  • Recknagel F., 2001. Application of machine learning to ecological modelling. Ecol. Model., 146, 303–310. [CrossRef] [Google Scholar]
  • Recknagel F., 2003. Ecological Informatics: Understanding Ecology by Biologically-Inspired Computation, Springer-Verlag, Berlin and New York, 425 p. [Google Scholar]
  • Ribeiro R. and Torgo L., 2008. A comparative study on predicting algae blooms in Douro River, Portugal. Ecol. Model., 212, 86–91. [CrossRef] [Google Scholar]
  • Salski A. and Sperlbaum C., 1991. A fuzzy logic approach to modeling in ecosystem research. In: Bouchon-Meunier B., Yager R.R., and Zadeh L.A. (eds.), Uncertainty in Knowledge Bases, 3rd International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU ’90, Paris, France, July 2–6, 1990, Lecture Notes in Computer Science, 521, Springer-Verlag, Berlin, 520–527. [Google Scholar]
  • Sanchez-Hernandez C., Boyd D.S. and Foody G.M., 2007a. Mapping specific habitats from remotely sensed imagery: support vector machine and support vector data description based classification of coastal saltmarsh habitats. Ecol. Inform., 2, 83–88. [CrossRef] [Google Scholar]
  • Sanchez-Hernandez C., Boyd D.S. and Foody G.M., 2007b. One-class classification for mapping a specific land-cover class: SVDD classification of Fenland. IEEE Trans. Geosci. Remote Sens., 45, 1061–1073. [Google Scholar]
  • Schleiter I.M., Obach M., Borchardt D. and Werner H., 2001. Bioindication of chemical and hydromorphological habitat characteristics with benthic macro-invertebrates based on artificial neural networks. Aquat. Ecol., 35, 147–158. [CrossRef] [Google Scholar]
  • Shan Y., Paull D. and McKay R.I., 2006. Machine learning of poorly predictable ecological data. Ecol. Model., 195, 129–138. [Google Scholar]
  • Smith G.R.T., Learner M.A., Slater F.M. and Foster J., 1996. Habitat features important for the conservation of the native crayfish Austropotamobius pallipes in Britain. Biol. Conserv., 75, 239–246. [Google Scholar]
  • Stockwell D.R.B. and Noble I.R., 1992. Induction of sets of rules from animal distribution data: a robust and informative method of analysis. Math. Comput. Simul., 33, 385–390. [CrossRef] [Google Scholar]
  • Tax D.M.J. and Duin R.P.W., 2004. Support vector data description. Mach. Learn., 54, 45–66. [CrossRef] [Google Scholar]
  • Tirelli T. and Pessani D., 2009. Use of decision tree and artificial neural network approaches to model presence/absence of Telestes muticellus in Piedmont (North-Western Italy). River Res. Appl., 24, 1001–1012. [CrossRef] [Google Scholar]
  • Tirelli T., Mussat Sartor R., Bona F., De Biaggi E., Zocco D. and Badino G., 2008. Census of Austropotamobius genus in four Districts of Piedmont (Western Italy). Boll. Mus. Reg. Sci. Nat. Torino, 25, 159–171. [Google Scholar]
  • Tirelli T., Pozzi L. and Pessani D., 2009. Use of different approaches to model presence/absence of Salmo marmoratus in Piedmont (Northwestern Italy). Ecol. Inform., 4, 234–242. [CrossRef] [Google Scholar]
  • Tirelli T., Favaro L. and Pessani D., submitted. Performance comparison among multivariate and data mining approaches to model presence/absence of Austropotamobius pallipes complex in Piedmont (Northwestern Italy). [Google Scholar]
  • Trouilhé M.C., Souty-Grosset C., Grandjean F. and Parinet B., 2007. Physical and chemical water requirements of the white-clawed crayfish (Austropotamobius pallipes) in western France. Aquat. Conserv., 17, 520–538. [Google Scholar]
  • Vapnik V.N., 1995. The Nature of Statistical Learning Theory, Springer-Verlag, New York, 314 p. [Google Scholar]
  • Witten I.H. and Frank E., 2005. Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn., Morgan Kaufmann Publishers, San Francisco, 371 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.