Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 400, 2011
Article Number 07
Number of page(s) 13
DOI https://doi.org/10.1051/kmae/2011003
Published online 17 February 2011
  • Alajärvi E. and Horppila J., 2004. Diel variations in the vertical distribution of crustacean zooplankton and food selection by planktivorous fish in a shallow turbid lake. International Review of Hydrobiology, 89, 238–249. [CrossRef] [Google Scholar]
  • Armengol X. and Miracle M.R., 2000. Diel vertical movements of zooplankton in lake La Cruz (Cuenca, Spain). J. Plankton Res., 22, 1683–1703. [CrossRef] [Google Scholar]
  • Bayly I.A.E., 1986. Aspects of diel vertical migration in zooplankton, and its enigma variations. In: Dedeccker P. and Williams W.D. (eds.), Limnology in Australia, Commonwealth Scientific and Industrial Research Organisation, Melbourne, 349–386. [Google Scholar]
  • Cushing D.H., 1951. The vertical migration of planktonic Crustacea. Biol. Rev., 26, 158–192. [CrossRef] [Google Scholar]
  • Daday J., 1884. The secrets of Lake Balaton (in Hung.). Orvos-Természettudományi Értesítõ, 6, 69–95. [Google Scholar]
  • Davidson N.L. and Kelso W.E., 1997. The exotic daphnid, Daphnia lumholtzi, in a Louisiana river-swamp. J. Freshwater. Ecol., 12, 431–435. [CrossRef] [Google Scholar]
  • De Meester L., 1993. Genotype, fish-mediated chemicals, and phototactic behavior in Daphnia magna. Ecology, 74, 1467–1474. [Google Scholar]
  • Denman K.L. and Gargett A.E., 1983. Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnol. Oceanog., 28, 801–815. [CrossRef] [Google Scholar]
  • Easton J. and Gophen M., 2003. Diel variation in the vertical distribution of fish and plankton in Lake Kinneret: a 24-h study of ecological overlap. Hydrobiologia, 491, 91–100. [CrossRef] [Google Scholar]
  • Einsle U., 1993. Crustacea Copepoda Calanoida und Cyclopoida, Gustav Fischer Verlag, Stuttgart, Jena, New York. [Google Scholar]
  • Entz B., 1981. Windgeschwindigkeit, Schwebstoffmengen und Lichtverhältnisse im Balatonsee. BFB-Bericht, 42, 69–78. [Google Scholar]
  • Entz G. and Sebestyén O., 1942. The life of Lake Balaton (in Hung.), Királyi Magyar Természetudományi Társulat, Budapest. [Google Scholar]
  • Felföldi L., 1981. The ecology of waters: general hydrobiology (in Hung.), Mezõgazdasági Kiadó, Budapest. [Google Scholar]
  • Flößner D., 2000. Die Haplopoda und Cladocera Mitteleuropas, Backhuys Publishers, Leiden. [Google Scholar]
  • Folt C.L. and Burns C.W., 1999. Biological drivers of zooplankton patchiness. Trends Ecol. & Evol., 14, 300–305. [CrossRef] [PubMed] [Google Scholar]
  • George D.G., 1983. Interrelations between the vertical distribution of Daphnia and chlorophyll a in two large limnetic enclosures. J. Plankton Res., 5, 457–475. [CrossRef] [Google Scholar]
  • George D.G. and Winfield I.J., 2000. Factors influencing the spatial distribution of zooplankton and fish in Loch Ness, UK. Freshw. Biol., 43, 557–570. [CrossRef] [Google Scholar]
  • Gulyás P. and Forró L., 1999. A short identification key to the Cladocera (in Hung.), Környezetgazdálkodási Intézet, Budapest. [Google Scholar]
  • Gulyás P. and Forró L., 2001. A short identification key to the Cladocera (in Hung.), Környezetgazdálkodási Intézet, Budapest. [Google Scholar]
  • G.-Tóth L., 1984. Feeding behaviour of Daphnia cucullata Sars in the easily stirred up Lake Balaton as established on the basis of gut content analyses. Arch. Hydrobiol., 101, 531–553. [Google Scholar]
  • G.-Tóth L., 1999. The role of crustacean assemblages in eliminating phytoplankton and providing fish (in Hung.), Closing report on the research activity of 1999 by order of the Prime Minister’s Office and of the Hungarian Academy of Science, Tihany, 1–86. [Google Scholar]
  • Harding W.R., 1997. Phytoplankton primary production in a shallow, well-mixed, hypertrophic South African lake. Hydrobiologia, 344, 87–102. [CrossRef] [Google Scholar]
  • Hilton J., 1985. A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnol. Oceanog., 30, 1131–1143. [CrossRef] [Google Scholar]
  • Hülsmann S., Vijverberg J., Boersma M. and Mooij W.M., 2004. Effects of infochemicals released by gape-limited fish on life history traits of Daphnia: a maladaptive response? J. Plankton Res., 26, 535–543. [CrossRef] [Google Scholar]
  • Hutchinson G.E., 1967. A Treatise on Limnology, Vol. II, John Wiley & Sons Inc., New York, London, Sydney, 725–788. [Google Scholar]
  • Kvam O.V. and Kleiven O.T., 1995. Diel horizontal migration and swarm formation in Daphnia in response to Chaoborus. Hydrobiologia, 307, 177–184. [CrossRef] [Google Scholar]
  • Lampert W., McCauley E. and Manly B.F.J., 2003. Trade-offs in the vertical distribution of zooplankton: ideal free distribution with costs? Proc. Royal Soc. Biol. Sci., 270, 765–773. [Google Scholar]
  • Levy D.A., 1990. Reciprocal diel vertical migration behavior in planktivores and zooplankton in British Columbia lakes. Can. J. Fish. Aquat. Sci., 47, 1755–1764. [CrossRef] [Google Scholar]
  • Loose C.J., 1993. Daphnia diel vertical migration behavior: Response to vertebrate predator abundance. Arch. Hydrobiol. Beih., 39, 29–36. [Google Scholar]
  • Megard R.O., Kuns M.M., Whiteside M.C. and Downing J.A., 1997. Spatial distributions of zooplankton during coastal upwelling in western Lake Superior. Limnol. Oceanog., 42, 827–840. [CrossRef] [Google Scholar]
  • Moore M.V., Pierce S.M., Walsh H.M., Kvalvik S.K. and Lim J.D., 2000. Urban light pollution alters the diel vertical migration of Daphnia. Verh. Internat. Verein. Limnol., 27, 1–4. [Google Scholar]
  • Nédli J., Forró L., Korponai J. and G.-Tóth L., 2005. Daphnia species (Crustacea, Cladocera) and the genetic characteristics of their populations based on allozyme studies in Lake Balaton, Hungary. Opusc. Zool., 36, 79–84. [Google Scholar]
  • Neill W.E., 1990. Induced vertical migration in copepods as a defence against invertebrate predation. Nature, 345, 524–526. [CrossRef] [Google Scholar]
  • Ohman M.D., Frost B.W. and Cohen E.B., 1983. Reverse diel vertical migration: an escape from invertebrate predators. Science, 220, 1404–1407. [CrossRef] [PubMed] [Google Scholar]
  • Podani J., 1997. Introduction in the enigma of multivariance analyses (in Hung.), Scientia Kiadó, Budapest, 1–412. [Google Scholar]
  • Ponyi J. and Péter L.H., 1986. The diel vertical migration of Eudiaptomus gracilis (G. O. Sars) in Lake Balaton (in Hung.). Állattani Közlemények, 73, 69–77. [Google Scholar]
  • Ponyi J. and Tamás G., 1964. Studies on the diel changes in phyto- and zooplantkon of the Inner Lake at Tihany (in Hung.). Állattani Közlemények, 51, 105–124. [Google Scholar]
  • Ramos-Jiliberto R. and Zúñiga L.R., 2001. Depth-selection patterns and diel vertical migration of Daphnia ambigua (Crustacea: Cladocera) in lake El Plateado. Revista Chilena De Historia Natural, 74, 573–585. [CrossRef] [Google Scholar]
  • Raymont J.E.G., 1983. Plankton and productivity in the oceans, second edition, Vol. 2: Zooplankton, Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt, 1–824. [Google Scholar]
  • Reynolds C.S., 1992. The role of fluid motion in the dynamics of phytoplankton in lakes and rivers. In: Giller P.S., Hildrew A.G. and Raffaelli D.G. (eds.), Aquatic ecology, scale, pattern and process, The 34th Symposium of the British Ecol. Soc. Univ. Coll. Blackwell, Oxford. [Google Scholar]
  • Ringelberg J., 1987. Light induced behaviour in Daphnia. In: Peters R.H. and De Bernardi R. (eds.), Daphnia, 285–323. [Google Scholar]
  • Ringelberg J., 1999. The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biol. Rev., 74, 397–423. [CrossRef] [Google Scholar]
  • Ringelberg J., 2000. The role of infochemicals in lake plankton crustacean behavior and predator-prey relations. In: von Vaupel Klein J.C. and Schram F.R. (eds.), The biodiversity crisis and crustacea, Proceedings of the Fourth International Crustacean Congress, Amsterdam, Netherlands, 20–24 July 1998, Volume 2, A.A. Balkema, Rotterdam, Brookfield, 161–174. [Google Scholar]
  • Ringelberg J., Flik B.J.G., Lindenaar D. and Royackers K., 1991. Diel vertical migration of Eudiaptomus gracilis during a short summer period. Hydrobiol. Bull., 25, 77–84. [CrossRef] [Google Scholar]
  • Rinke K., Hübner I., Petzoldt T., Rolinski S., König-Rinke M., Post J., Lorke A. and Benndorf J., 2007. How internal waves influence the vertical distribution of zooplankton. Freshw. Biol., 52, 137–144. [CrossRef] [Google Scholar]
  • Rothschild B.J. and Osborn T.R., 1988. Small-scale turbulence and plankton contact rates. J. Plankton Res., 10, 465–474. [CrossRef] [Google Scholar]
  • Sebestyén O., 1933. The diel vertical migration of Leptodora kindtii Focke (Crustacea; Cladocera) and factors influencing it in Lake Balaton (in Hung.). MBKM, 6, 104–118. [Google Scholar]
  • Somlyódy L., 1986. Wind induced sediment resuspension in shallow lakes, Internat. Conf. on water quality modeling in the inland natural environment, Bournemouth, England, 10–13 June 1986, BHRA, The Fluid Engineering Centre, Cranfield, Bedford, MK430 j, England, 287–298. [Google Scholar]
  • Stich H.B. and Lampert W., 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature, 293, 396–398. [CrossRef] [Google Scholar]
  • Szilágyi F., Tóth L. and Hoffmann L., 1981. The effect of resuspension on some of the particulate componens present in the water of Lake Balaton. Hydraul. Eng., 4, 295–304. [Google Scholar]
  • Tátrai I. and de Bernardi R., 1992. Indirect impact of cyprinid fish fry on the growth and fecundity of Daphnia obtusa. Arch. Hydrobiol., 125, 371–381. [Google Scholar]
  • Van Donk E., 2006. Food-web interactions in lakes: What is the impact of chemical information conveyance? In: Dicke M. and Takken W. (eds.), Chemical Ecology: from gene to ecosystem, Springer, 145–160. [Google Scholar]
  • Van Gool E. and Ringelberg J., 1998. Light-induced migration behaviour of Daphnia modified by food and predator kairomones. Anim. Behav., 56, 741–747. [CrossRef] [PubMed] [Google Scholar]
  • Visser A.W. and Stips A., 2002. Turbulence and zooplankton production: insights from PROVESS. J. Sea Res., 47, 317–329. [CrossRef] [Google Scholar]
  • Visser A.W., Mariani P. and Pigolotti S., 2009. Swimming in turbulence: zooplankton fitness in terms of foraging efficiency and predation risk. J. Plankton Res., 31, 121–133. [CrossRef] [Google Scholar]
  • Wetzel R.G., 1975. Limnology, W.B. Saunders Company, 1–742. [Google Scholar]
  • Worthington E.B., 1931. Vertical movements of freshwater macroplankton. Int. Rev. Hydrobiol., 25, 394–436. [CrossRef] [Google Scholar]
  • Zaret T.M. and Suffern J.S., 1976. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceonog., 21, 804–813. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.